A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype

Light is the environmental factor that most affects plant growth and development through its impact on photomorphogenesis and photosynthesis. A quadruple photoreceptor mutant lacking four of the most important photoreceptors in plants, phytochromes A and B (phyA, phyB) and cryptochromes 1 and 2 (cry...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fox, A.R
Otros Autores: Barberini, M.L, Ploschuk, E.L, Muschietti, J.P, Mazzella, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier GmbH 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15892caa a22012497a 4500
001 PAPER-13341
003 AR-BaUEN
005 20230518204340.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84938861437 
024 7 |2 cas  |a Arabidopsis Proteins; Proteome 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPPHE 
100 1 |a Fox, A.R. 
245 1 2 |a A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype 
260 |b Elsevier GmbH  |c 2015 
270 1 0 |m Mazzella, M.A.; INGEBI Vuelta de Obligado 2490Argentina 
506 |2 openaire  |e Política editorial 
504 |a Abramoff, M., Magelhaes, P., Ram, S., Image processing with ImageJ (2004) Biophotonics Int., 11 (7), pp. 36-42 
504 |a Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris (1949) Plant Physiol., 24 (1), pp. 1-15 
504 |a Bigeard, J., Rayapuram, N., Pflieger, D., Hirt, H., Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins (2014) Proteomics, 14 (19), pp. 2127-2140 
504 |a Boccalandro, H.E., Rugnone, M.L., Moreno, J.E., Ploschuk, E.L., Serna, L., Yanovsky, M.J., Casal, J.J., Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis (2009) Plant Physiol., 150 (2), pp. 1083-1092 
504 |a Boccalandro, H.E., Giordano, C.V., Ploschuk, E.L., Piccoli, P.N., Bottini, R., Casal, J.J., Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight (2012) Plant Physiol., 158 (3), pp. 1475-1484 
504 |a Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., Gorlach, J., Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants (2001) Plant Cell, 13 (7), pp. 1499-1510 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem., 72, pp. 248-254 
504 |a Brouwer, B., Gardeström, P., Keech, O., In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis (2014) J. Exp. Bot. 
504 |a Budde, R.J.A., Randall, D.D., Light as a signal influencing the phosphorylation status of plant proteins (1990) Plant Physiol., 94 (4), pp. 1501-1504 
504 |a Cashmore, A.R., Jarillo, J.A., Wu, Y.J., Liu, D., Cryptochromes blue light receptors for plants and animals (1999) Science, 284 (5415), pp. 760-765 
504 |a Cerdán, P.D., Staneloni, R.J., Casal, J.J., Sánchez, R.A., A 146bp fragment of the tobacco Lhcb1*2 promoter confers very-low-fluence: low-fluence and high-irradiance responses of phytochrome to a minimal CaMV 35S promoter (1997) Plant Mol. Biol., 33 (2), pp. 245-255 
504 |a Ferro, M., Brugière, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., Ramus, C., Rolland, N., AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins (2010) Mol. Cell Proteom., 9 (6), pp. 1063-1084 
504 |a Holm, M., Ma, L.G., Qu, L.J., Deng, X.W., Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis (2002) Genes Dev., 16 (10), pp. 1247-1259 
504 |a Isaacson, T., Damasceno, C.M., Saravanan, R.S., He, Y., Catala, C., Saladie, M., Rose, J.K., Sample extraction techniques for enhanced proteomic analysis of plant tissues (2006) Nat. Protoc., 1 (2), pp. 769-774 
504 |a Jang, I.C., Yang, J.Y., Seo, H.S., Chua, N.H., HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling (2005) Genes Dev., 19 (5), pp. 593-602 
504 |a Kim, D.S., Cho, D.S., Park, W.M., Na, H.J., Nam, H.G., Proteomic pattern-based analyses of light responses in Arabidopsis thaliana wild-type and photoreceptor mutants (2006) Proteomics, 6 (10), pp. 3040-3049 
504 |a Kultima, K., Scholz, B., Alm, H., Skold, K., Svensson, M., Crossman, A.R., Bezard, E., Lonnstedt, I., Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: a proteomic study of l-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE (2006) BMC Bioinform., 7, p. 475 
504 |a Lastdrager, J., Hanson, J., Smeekens, S., Sugar signals and the control of plant growth and development (2014) J. Exp. Bot., 65 (3), pp. 799-807 
504 |a Lau, O.S., Deng, X.W., The photomorphogenic repressors COP1 and DET1: 20 years later (2012) Trends Plant Sci., 17 (10), pp. 584-593 
504 |a Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Deng, X.W., Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development (2007) Plant Cell, 19 (3), pp. 731-749 
504 |a Lopez, L., Carbone, F., Bianco, L., Giuliano, G., Facella, P., Perrotta, G., Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues (2012) Plant Cell Environ., 35 (5), pp. 994-1012 
504 |a Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., Yang, H.Q., From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening (2005) Proc. Natl. Acad. Sci. U. S. A., 102 (34), pp. 12270-12275 
504 |a Mazzella, M.A., Casal, J.J., Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis thaliana (2001) Plant Cell Environ., 24 (2), pp. 155-161 
504 |a Mazzella, M.A., Cerdán, P.D., Staneloni, R.J., Casal, J.J., Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development (2001) Development, 128 (12), pp. 2291-2299 
504 |a Mazzella, M.A., Arana, M.V., Staneloni, R.J., Perelman, S., Rodriguez, B., atiller, M.J., Muschietti, J., Casal, J.J., Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light (2005) Plant Cell, 17 (9), pp. 2507-2516 
504 |a Minina, E.A., Sanchez-Vera, V., Moschou, P.N., Suarez, M.F., Sundberg, E., Weih, M., Bozhkov, P.V., Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis (2013) Aging Cell, 12 (2), pp. 327-329 
504 |a Murchie, E.H., Horton, P., Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference (1997) Plant Cell Environ., 20 (4), pp. 438-448 
504 |a Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W., Targeted destabilization of HY5 during light-regulated development of Arabidopsis (2000) Nature, 405 (6785), pp. 462-466 
504 |a Oyama, T., Shimura, Y., Okada, K., The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl (1997) Genes Dev., 11 (22), pp. 2983-2995 
504 |a Peschke, F., Kretsch, T., Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation (2011) Plant Physiol., 155 (3), pp. 1353-1366 
504 |a Phee, B.K., Park, S., Cho, J.H., Jeon, J.S., Bhoo, S.H., Hahn, T.R., Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant (2007) Mol. Cells, 23 (2), pp. 154-160 
504 |a Pogson, B.J., Woo, N.S., Forster, B., Small, I.D., Plastid signalling to the nucleus and beyond (2008) Trends Plant Sci., 13 (11), pp. 602-609 
504 |a Pogson, B.J., Albrecht, V., Genetic dissection of chloroplast biogenesis and development: an overview (2011) Plant Physiol., 155 (4), pp. 1545-1551 
504 |a Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., Wagner, D., Phytochromes photosensory perception and signal transduction (1995) Science, 268 (5211), pp. 675-680 
504 |a Ruckle, M.E., Burgoon, L.D., Lawrence, L.A., Sinkler, C.A., Larkin, R.M., Plastids are major regulators of light signaling in Arabidopsis thaliana (2012) Plant Physiol. 
504 |a Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., Chua, N.H., LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1 (2003) Nature, 423 (6943), pp. 995-999 
504 |a Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L., Fitting photosynthetic carbon dioxide response curves for C(3) leaves (2007) Plant Cell Environ., 30 (9), pp. 1035-1040 
504 |a Shen, H., Zhu, L., Castillon, A., Majee, M., Downie, B., Huq, E., Light-Induced phosphorylation and degradation of the negative regulator phytochrome-interacting factor1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes (2008) Plant Cell, 20 (6), pp. 1586-1602 
504 |a Shin, J., Kim, K., Kang, H., Zulfugarov, I.S., Bae, G., Lee, C.H., Lee, D., Choi, G., Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors (2009) Proc. Natl. Acad. Sci. U. S. A., 106 (18), pp. 7660-7665 
504 |a Smyth, G.K., Linear models and empirical bayes methods for assessing differential expression in microarray experiments (2004) Stat. Appl. Genet. Mol. Biol., 3 (1), pp. 1-25 
504 |a Smyth, G.K., (2005) Limma Linear Models for Microarray Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp. 397-420. , Springer, New York, R. Gentleman, V.J. Carey, W. Huber, R.A. Irizarry, S. Dudoit (Eds.) 
504 |a Strasser, B., Sanchez-Lamas, M., Yanovsky, M.J., Casal, J.J., Cerdan, P.D., Arabidopsis thaliana life without phytochromes (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (10), pp. 4776-4781 
504 |a Wang, F.-F., Lian, H.-L., Kang, C.-Y., Yang, H.-Q., Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana (2010) Mol. Plant, 3 (1), pp. 246-259 
504 |a Li, X., Yang, Y., Li, Y., Wang, J., Xiao, X., Guo, X., Tang, D., Liu, X., Protein identification and mRNA analysis of phytochrome-regulated genes in Arabidopsis under red light (2009) Sci. China C Life Sci., 52 (4) 
504 |a Yang, Y.J., Zuo, Z.C., Zhao, X.Y., Li, X., Klejnot, J., Li, Y., Chen, P., Lin, C.T., Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression (2008) Mol Plant, 1 (1), pp. 167-177 
504 |a Zivcak, M., Brestic, M., Kalaji, H.M., Govindjee Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? (2014) Photosynth Res., 119 (3), pp. 339-354 
520 3 |a Light is the environmental factor that most affects plant growth and development through its impact on photomorphogenesis and photosynthesis. A quadruple photoreceptor mutant lacking four of the most important photoreceptors in plants, phytochromes A and B (phyA, phyB) and cryptochromes 1 and 2 (cry1, cry2), is severely affected in terms of growth and development. Previous studies have suggested that in addition to a photomorphogenic disorder, the phyA phyB cry1 cry2 quadruple mutant might have severe alterations in photosynthetic ability. Here, we investigated the photosynthetic processes altered in the quadruple mutant and performed a proteomic profiling approach to identify some of the proteins involved. The phyA phyB cry1 cry2 quadruple mutant showed reduced leaf area and total chlorophyll content. Photosynthetic rates at high irradiances were reduced approximately 65% compared to the wild type (WT). Light-saturated photosynthesis and the response of net CO<inf>2</inf> exchange to low and high internal CO<inf>2</inf> concentrations suggest that the levels or activity of the components of the Calvin cycle and electron transport might be reduced in the quadruple mutant. Most of the under-expressed proteins in the phyA phyB cry1 cry2 quadruple mutant consistently showed a chloroplastic localization, whereas components of the Calvin cycle and light reaction centers were overrepresented. Additionally, Rubisco expression was reduced threefold in the phyA phyB cry1 cry2 quadruple mutant.Together, these results highlight the importance of the phytochrome and cryptochrome families in proper autotrophy establishment in plants. They also suggest that an overall limitation in the chlorophyll levels, expression of Rubisco, and enzymes of the Calvin Cycle and electron transport that affect ribulose-1,5-biphosphate (RuBP) regeneration reduced photosynthetic capacity in the phyA phyB cry1 cry2 quadruple mutant. © 2015 Elsevier GmbH.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto, PICT 2010 #1821, PICT 2007 # 01976 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: This work was financially supported by grants from FONCyT, Fondo Nacional de Ciencia y Técnica (PICT 2010 #1821) to M.A.M and PICT 2007 # 01976 to J.P.M. Appendix A 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina 
593 |a Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, 1417, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a Instituto de Genética Ewald A. Favret, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Argentina 
690 1 0 |a ARABIDOPSIS 
690 1 0 |a CRYPTOCHROME 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PHYTOCHROME 
690 1 0 |a PROTEOME 
690 1 0 |a ARABIDOPSIS 
690 1 0 |a ARABIDOPSIS PROTEIN 
690 1 0 |a PROTEOME 
690 1 0 |a ARABIDOPSIS 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MUTATION 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a RADIATION RESPONSE 
690 1 0 |a TWO DIMENSIONAL GEL ELECTROPHORESIS 
690 1 0 |a ARABIDOPSIS 
690 1 0 |a ARABIDOPSIS PROTEINS 
690 1 0 |a ELECTROPHORESIS, GEL, TWO-DIMENSIONAL 
690 1 0 |a GENE EXPRESSION REGULATION, PLANT 
690 1 0 |a MUTATION 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PROTEOME 
700 1 |a Barberini, M.L. 
700 1 |a Ploschuk, E.L. 
700 1 |a Muschietti, J.P. 
700 1 |a Mazzella, M.A. 
773 0 |d Elsevier GmbH, 2015  |g v. 185  |h pp. 13-23  |p J. Plant Physiol.  |x 01761617  |w (AR-BaUEN)CENRE-1651  |t Journal of Plant Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938861437&doi=10.1016%2fj.jplph.2015.07.004&partnerID=40&md5=68fa67d31f78c0d27092b7b01b123f6f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jplph.2015.07.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01761617_v185_n_p13_Fox  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01761617_v185_n_p13_Fox  |y Registro en la Biblioteca Digital 
961 |a paper_01761617_v185_n_p13_Fox  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74294