Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior

The objective of the work was to study foaming and interfacial properties of β-lactoblobulin and caseinomacropeptide as affected by the formation of nano-particles with increasing amounts of green tea polyphenols. In this contribution foams were obtained by whipping and the overrun, liquid drainage...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodríguez, S.D
Otros Autores: von Staszewski, M., Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11886caa a22008777a 4500
001 PAPER-13336
003 AR-BaUEN
005 20230518204339.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84946180365 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Rodríguez, S.D. 
245 1 0 |a Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior 
260 |b Elsevier  |c 2015 
270 1 0 |m Pilosof, A.M.R.; CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Baeza, R.I., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Interactions between β-lactoglobulin and polysaccharides at the air-water interface and the influence on foam properties (2005) Food Colloids. Interactions, microstrucure and processing, pp. 301-316. , The Royal Society of Chemistry, Cambridge, UK, E. Dickinson (Ed.) 
504 |a Bos, M., Nylander, T., Arnebrant, T., Clark, D.C., Protein/emulsifiers interactions (1997) Food Emulsifiers and Their Applications, pp. 95-137. , Chapman & Hall, London, R.W. Hartel, G.L. Hasenhuettl (Eds.) 
504 |a Carp, D.J., Bartholomai, G.B., Pilosof, A.M.R., Akinetic model to describe liquid drainage from soy protein foams over an extensive protein concentration range (1997) Lebensmittel-Wissenschaft und- Technologie, 30, pp. 253-258 
504 |a Charlton, A.J., Baxter, N.J., Lokman Khan, M., Moir, A.J.G., Haslam, E., Davies, A.P., Polyphenol/peptide binding and precipitation (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1593-1601 
504 |a Chen, D., Wan, S.B., Yang, H., Yuan, J., Chan, T.H., Dou, Q.P., EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment (2011) Advances in Clinical Chemistry, 53, pp. 155-177 
504 |a Dickinson, E., Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology (1999) Colloids and Surfaces B: Biointerfaces, 15 (2), pp. 161-176 
504 |a Dickinson, E., Food emulsions and foams: stabilization by particles (2010) Current Opinion in Colloid & Interface Science, 15, pp. 40-49 
504 |a Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88 
504 |a Graf, B.A., Milbury, P.E., Blumberg, J.B., Flavonols, flavones, flavanones, and human health: epidemiological evidence (2005) Journal of Medicinal Food, 8, pp. 281-290 
504 |a Girardet, J.-M., Humbert, G., Creusot, N., Chardot, V., Campagna, S., Courthaudon, J.-L., Dilational rheology of mixed b-casein/Tween 20 and b-casein (f114-169)/Tween 20 films at oil-water interface (2001) Journal of Colloid and Interface Science, 243, pp. 515-522 
504 |a Ipsen, R., Otte, J., Sharma, R., Nielsen, A., Hansen, L.G., Qvist, K.B., Effect of limited hydrolysis on the interfacial rheology and foaming properties of β-lactoglobulin (2001) Colloids and Surfaces B: Biointerfaces, 21, pp. 173-178 
504 |a Kreu, M., Krause, I., Kulozik, U., Influence of glycosylation on foaming properties of bovine caseinomacropeptide (2009) International Dairy Journal, 19 (12), pp. 715-720 
504 |a Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., Green tea consumption and mortality due to cardiovascular disease, cancer and all causes in Japan (2006) Journal of the American Medical Association, 296, pp. 1255-1265 
504 |a Labourdenne, S., Gaudry-Rolland, N., Letellier, S., Lin, M., Cagna, A., Esposito, G., The oil-drop tensiometer: potential applications for studying the kinetics of (phospho)lipase action (1994) Chemistry and Physics of Lipids, 71 (2), pp. 163-173 
504 |a Lataza Rovaletti, M.M., Benítez, E.I., Martinez Amezaga, N.M.J., Peruchena, N.M., Sosa, G.L., Lozano, J.E., Polysaccharides influence on the interaction between tannic acid and haze active proteins in beer (2014) Food Research International, 62, pp. 779-785 
504 |a Lucassen, J., Van Den Tempel, M., Dynamic measurements of dilational properties of a liquid interface (1972) Chemical Engineering Science, 27 (6), pp. 1283-1291 
504 |a Marinova, K.G., Basheva, E.S., Nenova, B., Temelska, M., Mirarefi, A.Y., Campbell, B., Physico-chemical factors controlling the foamability and foam stability of milk proteins: sodium caseinate and whey protein concentrates (2009) Food Hydrocolloids, 23 (7), pp. 1864-1876 
504 |a Martin, A.H., Bos, M.A., van Vliet, T., Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface (2002) Food Hydrocolloids, 16 (1), pp. 63-71 
504 |a Martínez, M.J., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Interactions between β-lactoglobulin and casein glycomacropeptide on foaming (2012) Colloids and Surfaces B: Biointerfaces, 89, pp. 234-241 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., Casein glycomacropeptide pH-driven self-assembly and gelation upon heating (2011) Food Hydrocolloids, 25 (5), pp. 860-867 
504 |a Martinez, M.J., Sánchez, C.C., Patino, J.M.R., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71 (2), pp. 230-237 
504 |a Mursu, J., Voutilainen, S., Nurmi, T., Tuomainen, T.P., Kurt, S., Salonen, J.T., Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-ages Finnish men (2008) Journal of Nutrition, 100, pp. 890-895 
504 |a Nagy, K., Courtet-Compondu, M.C., Williamson, G., Rezzi, S., Kussmann, M., Rytz, A., Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence (2012) Food Chemistry, 132, pp. 1333-1339 
504 |a Pizones Ruiz-Henestrosa, V., Carrera Sánchez, C., Rodríguez Patino, J.M., Effect of sucrose on functional properties of soy globulins: adsorption and foam characteristics (2008) Journal of Agricultural and Food Chemistry, 56, pp. 2512-2521 
504 |a Poncet-Legrand, C., Edelmann, A., Putaux, J.L., Cartalade, D., Sarni-Manchado, P., Vernhet, A., Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio (2006) Food Hydrocolloids, 20, pp. 687-697 
504 |a Quiñones, M., Miguel, M., Aleixandrea, A., Beneficial effects of polyphenols on cardiovascular disease (2013) Pharmacological Research, 68, pp. 125-131 
504 |a Rio, E., Drenckhan, W., Salonen, A., Langevin, D., Unusually stable liquid foams (2014) Advances in Colloid and Interface Science, 205 (0), pp. 74-86 
504 |a Scalbert, A., Manach, C., Morand, C., Rémésy, C., Dietary polyphenols and the prevention of diseases (2005) Critical Reviews in Food Science and Nutrition, 45, pp. 287-306 
504 |a Siebert, K.J., Carrasco, A., Lynn, P.Y., Formation of protein-polyphenol haze in beverages (1996) Journal of Agricultural and Food Chemistry, 44, pp. 1997-2005 
504 |a Singleton, V.L., Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents (1965) American Journal of Enology and Viticulture, 16, pp. 144-158 
504 |a von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R., Nanocomplex formation between ß-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity (2012) Journal of Functional Foods, 4 (4), pp. 800-809 
504 |a von Staszewski, M., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R., Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil (2014) Food Hydrocolloids, 35, pp. 505-511 
504 |a Thomä Worringer, C., Siegert, N., Kulozik, U., Foaming properties of caseinomacropeptide - 1. Impact of concentration and interactions with whey proteins (2007) Milchwissenschaft, 62, pp. 249-252 
504 |a Thöma Worringer, C., Siegert, N., Kulozik, U., Foaming properties of caseinomacropeptide - 2. Impact on pH and ionic strenght (2007) Milchwissenschaft, 62 (3), pp. 253-255 
504 |a Weng, C.J., Yen, G.C., Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol and their derivatives (2012) Cancer Treatment Reviews, 38, pp. 76-87 
504 |a Wu, W., Clifford, M., Howell, N.K., The effect of instant green tea on the foaming and rheological properties of egg albumen proteins (2007) Journal of the Science of Food and Agriculture, 87, pp. 1810-1819 
504 |a Yang, C.S., Li, G., Yang, Z., Guan, F., Chen, A., Ju, J., Cancer prevention by tocopherols and tea polyphenols (2013) Cancer Letters, 334 (1), pp. 79-85 
520 3 |a The objective of the work was to study foaming and interfacial properties of β-lactoblobulin and caseinomacropeptide as affected by the formation of nano-particles with increasing amounts of green tea polyphenols. In this contribution foams were obtained by whipping and the overrun, liquid drainage and height stability of the foams were evaluated. The interfacial properties were determined by a drop tensiometer. The formation of nano-particles (30-90nm) decreased the surface pressure and the elastic component of the dilatational modulus of films that resulted in faster foam drainages. However, foam overrun was not affected and foam column falling was retarded. The results point out that nano-particles formed at low polyphenols concentration could retard foam falling without affecting foam overrun, despite decreasing the surface films viscoelasticity. The contribution of polyphenols to avoid foam column falling may be laid in the interfacial interactions between proteins and polyphenols. © 2015.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: This research was supported by Universidad de Buenos Aires , Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina . 
593 |a CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina 
690 1 0 |a FOAM 
690 1 0 |a GREEN TEA POLYPHENOLS 
690 1 0 |a INTERACTIONS 
690 1 0 |a INTERFACE 
690 1 0 |a WHEY PROTEINS 
700 1 |a von Staszewski, M. 
700 1 |a Pilosof, A.M.R. 
773 0 |d Elsevier, 2015  |g v. 50  |h pp. 108-115  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946180365&doi=10.1016%2fj.foodhyd.2015.04.015&partnerID=40&md5=fdeb0bc189fddf542ad621a8e2d369a8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2015.04.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v50_n_p108_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v50_n_p108_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v50_n_p108_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74289