Salt Pumping by Voltage-Gated Nanochannels

This Letter investigates voltage-gated nanochannels, where both the potential applied to the conductive membrane containing the channel (membrane potential) and the potential difference between the solutions at both sides of the membrane (transmembrane potential) are independently controlled. The pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tagliazucchi, M.
Otros Autores: Szleifer, I.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09999caa a22009977a 4500
001 PAPER-13312
003 AR-BaUEN
005 20230518204338.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84942017781 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Tagliazucchi, M. 
245 1 0 |a Salt Pumping by Voltage-Gated Nanochannels 
260 |b American Chemical Society  |c 2015 
270 1 0 |m Szleifer, I.; Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern UniversityUnited States 
506 |2 openaire  |e Política editorial 
504 |a Tagliazucchi, M., Szleifer, I., Transport Mechanisms in Nanopores and Nanochannels: Can We Mimic Nature? (2015) Mater. Today, 18, pp. 131-142 
504 |a Hou, X., Zhang, H.C., Jiang, L., Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification (2012) Angew. Chem., Int. Ed., 51, pp. 5296-5307 
504 |a Soler-Illia, G.J.A.A., Azzaroni, O., Multifunctional Hybrids by Combining Ordered Mesoporous Materials and Macromolecular Building Blocks (2011) Chem. Soc. Rev., 40, pp. 1107-1150 
504 |a Miller, S.A., Martin, C.R., Redox Modulation of Electroosmotic Flow in a Carbon Nanotube Membrane (2004) J. Am. Chem. Soc., 126, pp. 6226-6227 
504 |a Buyukserin, F., Kohli, P., Wirtz, M.O., Martin, C.R., Electroactive Nanotube Membranes and Redox-Gating (2007) Small, 3, pp. 266-270 
504 |a Nishizawa, M., Menon, V.P., Martin, C.R., Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity (1995) Science, 268, pp. 700-705 
504 |a Kang, M.S., Martin, C.R., Investigations of Potential-Dependent Fluxes of Ionic Permeates in Gold Nanotubule Membranes Prepared Via the Template Method (2001) Langmuir, 17, pp. 2753-2759 
504 |a Martin, C.R., Nishizawa, M., Jirage, K., Kang, M., Investigations of the Transport Properties of Gold Nanotubule Membranes (2001) J. Phys. Chem. B, 105, pp. 1925-1934 
504 |a Majumder, M., Zhan, X., Andrews, R., Hinds, B.J., Voltage Gated Carbon Nanotube Membranes (2007) Langmuir, 23, pp. 8624-8631 
504 |a Wu, J., Zhan, X., Hinds, B.J., Ionic Rectification by Electrostatically Actuated Tethers on Single Walled Carbon Nanotube Membranes (2012) Chem. Commun., 48, pp. 7979-7981 
504 |a Gao, P., Martin, C.R., Voltage Charging Enhances Ionic Conductivity in Gold Nanotube Membranes (2014) ACS Nano, 8, pp. 8266-8272 
504 |a Rutkowska, A., Freedman, K., Skalkowska, J., Kim, M.J., Edel, J.B., Albrecht, T., Electrodeposition and Bipolar Effects in Metallized Nanopores and Their Use in the Detection of Insulin (2015) Anal. Chem., 87, pp. 2337-2344 
504 |a Karnik, R., Fan, R., Yue, M., Li, D., Yang, P., Majumdar, A., Electrostatic Control of Ions and Molecules in Nanofluidic Transistors (2005) Nano Lett., 5, pp. 943-948 
504 |a Liu, Y., Huber, D.E., Dutton, R.W., Limiting and Overlimiting Conductance in Field-Effect Gated Nanopores (2010) Appl. Phys. Lett., 96, p. 253108 
504 |a Liu, Y., Huber, D.E., Tabard-Cossa, V., Dutton, R.W., Descreening of Field Effect in Electrically Gated Nanopores (2010) Appl. Phys. Lett., 97, p. 143109 
504 |a Boon, N., Olvera De La Cruz, M., 'Soft' Amplifier Circuits Based on Field-Effect Ionic Transistors (2015) Soft Matter, 11, pp. 4793-4798 
504 |a Tagliazucchi, M., Calvo, E.J., Szleifer, I., Molecular Theory of Chemically Modified Electrodes by Redox Polyelectrolytes under Equilibrium Conditions: Comparison with Experiment (2008) J. Phys. Chem. C, 112, pp. 458-471 
504 |a Hamelin, A., The Surface State and the Potential of Zero Charge of Gold (100): A Further Assessment (1995) J. Electroanal. Chem., 386, pp. 1-10 
504 |a Ai, Y., Zhang, M., Joo, S.W., Cheney, M.A., Qian, S., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores (2010) J. Phys. Chem. C, 114, pp. 3883-3890 
504 |a Corry, B., Kuyucak, S., Chung, S.H., Tests of Continuum Theories as Models of Ion Channels. II. Poisson-Nernst-Planck Theory Versus Brownian Dynamics (2000) Biophys. J., 78, pp. 2364-2381 
504 |a Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods, , 2nd ed. John Wiley and Sons: New York 
504 |a Vlassiouk, I., Smirnov, S., Siwy, Z., Ionic Selectivity of Single Nanochannels (2008) Nano Lett., 8, pp. 1978-1985 
504 |a Schoch, R.B., Han, J., Renaud, P., Transport Phenomena in Nanofluidics (2008) Rev. Mod. Phys., 80, pp. 839-883 
504 |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte Modified Nanopores (2011) J. Am. Chem. Soc., 133, pp. 17753-17763 
504 |a Daiguji, H., Ion Transport in Nanofluidic Channels (2010) Chem. Soc. Rev., 39, pp. 901-911 
504 |a Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., Mafé, S., Ion Transport and Selectivity in Nanopores with Spatially Inhomogeneous Fixed Charge Distributions (2007) J. Chem. Phys., 126, p. 194703 
504 |a Stein, D., Kruithof, M., Dekker, C., Surface-Charge-Governed Ion Transport in Nanofluidic Channels (2004) Phys. Rev. Lett., 93, pp. 035901-35911 
504 |a Goldman, D.E., Potential, Impedance and Rectification in Membranes (1943) J. Gen. Physiol., 27, pp. 37-60 
504 |a Rice, C.L., Whitehead, R., Electrokinetic Flow in a Narrow Cylindrical Capillary (1965) J. Phys. Chem., 69, p. 4017 
504 |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes (2013) ACS Nano, 7, pp. 9085-9097 
504 |a Daiguji, H., Oka, Y., Shirono, K., Nanofluidic Diode and Bipolar Transistor (2005) Nano Lett., 5, pp. 2274-2280 
504 |a Vlassiouk, I., Smirnov, S., Siwy, Z., Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions (2008) ACS Nano, 2, pp. 1589-1602 
504 |a Vlassiouk, I., Siwy, Z.S., Nanofluidic Diode (2007) Nano Lett., 7, pp. 552-556 
504 |a Zangle, T.A., Mani, A., Santiago, J.G., Theory and Experiments of Concentration Polarization and Ion Focusing at Microchannel and Nanochannel Interfaces (2010) Chem. Soc. Rev., 39, pp. 1014-1035 
504 |a Fosdick, S.E., Knust, K.N., Scida, K., Crooks, R.M., Bipolar Electrochemistry (2013) Angew. Chem., Int. Ed., 52, pp. 10438-10456 
504 |a Siwy, Z., Fuliński, A., Fabrication of a Synthetic Nanopore Ion Pump (2002) Phys. Rev. Lett., 89, pp. 198103/1-198103/4 
504 |a Ramirez, P., Gomez, V., Ali, M., Ensinger, W., Mafe, S., Net Currents Obtained from Zero-Average Potentials in Single Amphoteric Nanopores (2013) Electrochem. Commun., 31, pp. 137-140 
520 3 |a This Letter investigates voltage-gated nanochannels, where both the potential applied to the conductive membrane containing the channel (membrane potential) and the potential difference between the solutions at both sides of the membrane (transmembrane potential) are independently controlled. The predicted conductance characteristics of these fixed-potential channels dramatically differ from those of the widely studied fixed-charge nanochannels, in which the membrane is insulating and has a fixed surface charge density. The difference arises because the transmembrane potential induces an inhomogeneous charge distribution on the surface of fixed-potential nanochannels. This behavior, related to bipolar electrochemistry, has some interesting and unexpected consequences for ion transport. For example, continuously oscillating the transmembrane potential, while holding the membrane potential at the potential for which it has zero charge in equilibrium, creates fluxes of neutral salt (fluxes of anions and cations in the same direction and number) through the channel, which is an interesting phenomenon for desalination applications. © 2015 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Basic Energy Sciences, BES, DE-SC0000989 
536 |a Detalles de la financiación: U.S. Department of Energy, DOE 
536 |a Detalles de la financiación: Office of Science, SC 
593 |a Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States 
593 |a INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina 
690 1 0 |a BIPOLAR DIODE 
690 1 0 |a BIPOLAR ELECTROCHEMISTRY 
690 1 0 |a DESALINIZATION 
690 1 0 |a ION CURRENT 
690 1 0 |a MEMBRANE 
690 1 0 |a NANOPORE 
690 1 0 |a NERNST-PLANCK 
690 1 0 |a BIOELECTRIC POTENTIALS 
690 1 0 |a DESALINATION 
690 1 0 |a ELECTROCHEMISTRY 
690 1 0 |a IONS 
690 1 0 |a NANOPORES 
690 1 0 |a BIPOLAR DIODES 
690 1 0 |a BIPOLAR ELECTROCHEMISTRIES 
690 1 0 |a DESALINIZATION 
690 1 0 |a ION CURRENTS 
690 1 0 |a NERNST-PLANCK 
690 1 0 |a MEMBRANES 
700 1 |a Szleifer, I. 
773 0 |d American Chemical Society, 2015  |g v. 6  |h pp. 3534-3539  |k n. 18  |p J. Phys. Chem. Lett.  |x 19487185  |w (AR-BaUEN)CENRE-4167  |t Journal of Physical Chemistry Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942017781&doi=10.1021%2facs.jpclett.5b01315&partnerID=40&md5=cff5b383b6684a4c972720de9e14fa6c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpclett.5b01315  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19487185_v6_n18_p3534_Tagliazucchi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487185_v6_n18_p3534_Tagliazucchi  |y Registro en la Biblioteca Digital 
961 |a paper_19487185_v6_n18_p3534_Tagliazucchi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74265