Thermosensation and the TRPV channel in Rhodnius prolixus

The thermal sense of triatomine bugs, vectors of Chagas disease, is unique among insects. Not only do these bugs exhibit the highest sensitivity to heat known in any animal up to date, but they can also perceive the infrared radiation emitted by the body of their warm-blooded hosts. The sensory basi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zermoglio, P.F
Otros Autores: Latorre-Estivalis, J.M, Crespo, J.E, Lorenzo, M.G, Lazzari, C.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22128caa a22020897a 4500
001 PAPER-13219
003 AR-BaUEN
005 20230518204330.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84939435397 
024 7 |2 cas  |a capsaicin, 404-86-4; capsazepine, 138977-28-3; Capsaicin; capsazepine; TRPV Cation Channels 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Zermoglio, P.F. 
245 1 0 |a Thermosensation and the TRPV channel in Rhodnius prolixus 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Lazzari, C.R.; Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Avenue Monge, Parc Grandmont, France 
506 |2 openaire  |e Política editorial 
504 |a Abascal, F., Zardoya, R., Posada, D., ProtTest: selection of best-fit models of protein evolution (2005) Bioinformatics, 21, pp. 2104-2105 
504 |a Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410 
504 |a Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Magrane, M., The universal protein resource (UniProt) (2005) Nucleic Acids Res., 33, pp. D154-D159 
504 |a Barbagallo, B., Garrity, P.A., Temperature sensation in Drosophila (2015) Curr. Opin. Neurobiol., 34, pp. 8-13 
504 |a Benham, C.D., Gunthorpe, M.J., Davis, J.B., TRPV channels as temperature sensors (2003) Cell Calcium, 33, pp. 479-487 
504 |a Bernsel, A., Viklund, H., Hennerdal, A., Elofsson, A., TOPCONS: consensus prediction of membrane protein topology (2009) Nucl. Acids Res., 37, pp. W465-468 
504 |a Bevan, S., Hothi, S., Hughes, G., James, I.F., Rang, H.P., Shah, K., Walpole, C.S.J., Yeats, J.C., Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin (1992) Br. J. Pharmacol., 107, pp. 544-552 
504 |a Bodin, A., Vinauger, C., Lazzari, C.R., Behavioural and physiological state dependency of host seeking in the blood-sucking insect Rhodnius prolixus (2009) J. Exp. Biol., 212, pp. 2386-2393 
504 |a Bodin, A., Vinauger, C., Lazzari, C.R., State-dependency of host-seeking in Rhodnius prolixus: the post-ecdysis time (2009) J. Insect Physiol., 55, pp. 574-579 
504 |a Caterina, M.J., Transient receptor potential ion channels as participants in thermosensation and thermoregulation (2007) Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, pp. R64-R76 
504 |a Damann, N., Voets, T., Nilius, B., TRPs in our senses (2008) Curr. Biol., 18, pp. R880-R889 
504 |a Dhaka, A., Viswanath, V., Patapoutian, A., Trp ion channels and temperature sensation (2006) Annu. Rev. Neurosci., 29, pp. 135-161 
504 |a Dhaka, A., Murray, A.N., Mathur, J., Earley, T.J., Petrus, M.J., Patapoutian, A., TRPM8 is required for cold sensation in mice (2007) Neuron, 54, pp. 371-378 
504 |a Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., Niemeyer, B.A., Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat (2004) J. Biol. Chem., 279, pp. 34456-34463 
504 |a Ferreira, R.A., Lazzari, C.R., Lorenzo, M.G., Pereira, M.H., Do haematophagous bugs assess skin surface temperature to detect blood vessels? (2007) PLoS ONE, 2, p. e932 
504 |a Fowler, M.A., Montell, C., Drosophila TRP channels and animal behavior (2013) Life Sci., 92, pp. 394-403 
504 |a Fresquet, N., Lazzari, C.R., Response to heat in Rhodnius prolixus: the role of thermal background (2011) J. Insect Physiol., 57, pp. 1446-1449 
504 |a Gonzalez-Reyes, L.E., Ladas, T.P., Chiang, C.C., Durand, D.M., TRPV1 antagonist capsazepine suppresses 4-AP-induced epileptiform activity in vitro and electrographic seizures in vivo (2013) Exp. Neurol., 250, pp. 321-332 
504 |a Guarneri, A.A., Lazzari, C.R., Xavier, A.A.P., Diotaiuti, L., Lorenzo, M.G., The effect of temperature on the behaviour and development ofTriatoma brasiliensis (2003) Physiol. Entomol., 28, pp. 185-191 
504 |a Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., Garrity, P.A., An internal thermal sensor controlling temperature preference in Drosophila (2008) Nature, 454, pp. 217-220 
504 |a Huang, C.L., The transient receptor potential superfamily of ion channels (2004) J. Am. Soc. Nephrol., 15, pp. 1690-1699 
504 |a Hwang, R.Y., Stearns, N.A., Tracey, W.D., The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception (2012) PLoS ONE, 7 (1), p. e30090 
504 |a Insausti, T.C., Lazzari, C.R., Campanucci, V.A., Neurobiology of behaviour. A: morphology of the nervous system and sense organs (1999) Atlas of Chagas' Disease Vectors in America, 3, pp. 1017-1051. , Editora Fiocruz, Rio de Janeiro, Carcavallo (Ed.) 
504 |a Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Nuka, G., InterProScan 5: genome-scale protein function classification (2014) Bioinformatics, 30, pp. 1236-1240 
504 |a Jordt, S.E., McKemy, D.D., Julius, D., Lessons from peppers and peppermint: the molecular logic of thermosensation (2003) Curr. Opin. Neurobiol., 13, pp. 487-492 
504 |a Khan-Kirby, A.H., Bargmann, C.I., TRP Channels in C. elegans (2006) Annu. Rev. Physiol., 68, pp. 719-736 
504 |a Kim, J., Chung, Y.D., Park, D.Y., Choi, S., Shin, D.W., Soh, H., Lee, H.W., Kim, C., A TRPV family ion channel required for hearing in Drosophila (2003) Nature, 424, pp. 81-84 
504 |a Kim, H.G., Margolies, D., Park, Y., The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle (2015) Tribolium castaneum. J. Insect. Physiol, , (in press) 
504 |a Knowlton, W.M., Bifolck-Fisher, A., Bautista, D.M., McKemy, D.D., TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimeticsin vivo (2010) Pain, 150, pp. 340-350 
504 |a Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J. Mol. Biol., 305, pp. 567-580 
504 |a Kwon, Y., Shen, W.L., Shim, H.S., Montell, C., Fine thermotactic discrimination between the optimal and slightly cooler temperaturesviaa TRPV channel in chordotonal neurons (2010) J. Neurosci., 30, pp. 10465-10471 
504 |a Latorre-Estivalis, J.M., Lazzari, C.R., Guarneri, A.A., Mota, T., Omondi, B.A., Lorenzo, M.G., Genetic basis of triatomine behavior: lessons from available insect genomes (2013) Mem. Inst. Oswaldo Cruz, 108, pp. 63-73 
504 |a Lazzari, C.R., Temperature preference in Triatoma infestans (Hemiptera: Reduviidae) (1991) Bull. Entomol. Res., 81, pp. 273-276 
504 |a Lazzari, C.R., Circadian organization of locomotion activity in the haematophagus bug Triatoma infestans (1992) J. Insect Physiol., 38, pp. 895-903 
504 |a Lazzari, C.R., Orientation towards hosts in haematophagous insects: an integrative perspective (2009) Adv. Insect Physiol., 37, pp. 1-58 
504 |a Lazzari, C.R., Núñez, J.A., The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans (1989) J. Insect Physiol., 35 (6), pp. 525-529 
504 |a Lazzari, C.R., Wicklein, M., The cave-like sense organ in the antennae of triatominae bugs (1994) Mem. Inst. Oswaldo Cruz, 89, pp. 643-648 
504 |a Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol. Biol. Evol., 25, pp. 1307-1320 
504 |a Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S.T., Bae, E., Kim, J., Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster (2005) Nat. Genet., 37, pp. 305-310 
504 |a Lorenzo Figueiras, A.N., Flores, G.B., Lazzari, C.R., The role of antennae in the thermopreference and biting response of haematophagous bugs (2013) J. Insect Physiol., 59, pp. 1194-1198 
504 |a Lundbaek, J.A., Birn, P., Tape, S.E., Toombes, G.E.S., Søgaard, R., Koeppe, R.E., Gruner, S.M., Andersen, O.S., Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity (2005) Mol. Pharmacol., 68, pp. 680-689 
504 |a Maliszewska, J., Tegowska, E., Capsaicin as an organophosphate synergist against Colorado potato beetle (Leptinotarsa decemlineata Say) (2012) J. Plant Prot. Res., 52 (1), pp. 28-34 
504 |a Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M., Kadowaki, T., Evolutionary conservation and changes in insect TRP channels (2009) BMC Evol. Biol., 9, p. 228 
504 |a Neely, G.G., Keene, A.C., Duchek, P., Chang, E.C., Wang, Q.-P., Aksoy, Y.A., Rosenzweig, M., Penninger, J.M., TrpA1 regulates thermal nociception in Drosophila (2011) PLoS ONE, 6 (8), p. e24343 
504 |a Nilius, B., Voets, T., TRP channels: a TR(I)P through a world of multifunctional cation channels (2005) Eur. J. Physiol., 451, pp. 1-10 
504 |a O'Neil, R.G., Brown, R.C., The vanilloid receptor family of calcium permeable channels: molecular integrators of microenvironmental stimuli (2003) News Physiol. Sci., 18, pp. 226-231 
504 |a Olszewska, J., Vanilloid receptors - comparison of structure and functions in mammals and invertebrates (2010) Folia Biol., 58 (1-2). , (Kraków) 
504 |a Olszewska, J., Tegowska, E., Grajpel, B., Adamkiewicz, B., Effect of application of capsaicin and pyrethroid on metabolic rate in mealworm Tenebrio molitor (2010) Ecol. Chem. Eng. A, 17 (10), pp. 1355-1359 
504 |a Olszewska, J., Tegowska, E., Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects (2011) J. Comp. Physiol. A., 197, pp. 1021-1026 
504 |a Palkar, R., Lippoldt, E.K., McKemy, D.D., The molecular and cellular basis of thermosensation in mammals (2015) Curr. Opin. Neurobiol., 34, pp. 14-19 
504 |a Pedersen, S.F., Owsianik, G., Nilius, B., TRP channels: an overview (2005) Cell Cal., 38, pp. 233-252 
504 |a Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat. Methods, 29 (10), pp. 785-786 
504 |a Pires, H.H.R., Lazzari, C.R., Schilman, P.E., Diotaiuti, L., Lorenzo, M.G., Dynamics of thermopreference in the chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae) (2002) J. Med. Entomol., 39 (5), pp. 716-719 
504 |a Ramsey, I.S., Delling, M., Clapham, D.E., An introduction to TRP channels (2006) Annu. Rev. Physiol., 68, pp. 619-647 
504 |a Reisenman, C.E., Lazzari, C.R., Giurfa, M., Circadian control of photonegative sensitivity in the haematophagous bug, Triatoma infestans (1998) J. Comp. Physiol. A, 183, pp. 533-541 
504 |a Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers (2000) Methods Mol. Biol., 132, pp. 365-386 
504 |a Rosenzweig, M., Kang, K., Garrity, P.A., Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 14668-14673 
504 |a Schilman, P.E., Lazzari, C.R., Temperature preference in Rhodnius prolixus, effects and possible consequences (2004) Acta Trop., 90, pp. 115-122 
504 |a Schmitz, H., Trenner, S., Hofmann, M.H., Bleckmann, H., The ability of Rhodnius prolixus (Hemiptera, Reduviidae) to approach a thermal source solely by its infrared radiation (2000) J. Insect Physiol., 46, pp. 745-751 
504 |a Schumacher, M.A., Moff, I., Sudanagunta, S.P., Levine, J.D., Molecular cloning of an N-terminal splice variant of the capsaicin receptor Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes (2000) J. Biol. Chem., 275, pp. 2756-2762 
504 |a Szallasi, A., Blumberg, P.M., Vanilloid (Capsaicin) receptors and mechanisms (1999) Pharmacol. Rev., 51 (2), pp. 159-211 
504 |a Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729 
504 |a Tegowska, E., Grajpel, B., Piechowicz, B., Does red pepper contain an insecticidal compound for Colorado beetle? (2005) IOBC wprs Bull., 28, pp. 121-127 
504 |a Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nuc. Acids Res., 25 (24), pp. 4876-4882 
504 |a Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Julius, D., The cloned capsaicin receptor integrates multiple pain-producing stimuli (1998) Neuron, 21, pp. 531-543 
504 |a Tracey, W.D., Wilson, R.I., Laurent, G., Benzer, S., Painless, a Drosophila gene essential for nociception (2003) Cell, 113 (2), pp. 261-273 
504 |a Venkatachalam, K., Montell, C., (2007) TRP Channels. Annu. Rev. Biochem., 76, pp. 387-417 
504 |a Vennekens, R., Owsianik, G., Nilius, B., Vanilloid transient receptor potential cation channels: an overview (2008) Curr. Pharm. Des., 14, pp. 18-31 
504 |a Vinauger, C., Lallement, H., Lazzari, C.R., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (2013) J. Exp. Biol., 216, pp. 892-900 
504 |a Walpole, C.S.J., Bevan, S., Bovermann, G., Boelsterli, J.J., Breckenridge, R., Davies, J.W., Hughes, G.A., Wrigglesworth, R., The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin (1994) J. Med. Chem., 37, pp. 1942-1954 
504 |a Wang, G., Qiu, Y.T., Tan Lu, T., Kwon, H.-W., Pitts, R.J., Van Loon, J.J.A., Takken, W., Zwiebe, L.J., Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae (2009) Eur. J. Neurosci., 30 (6), pp. 967-974 
504 |a Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J., Jalview version 2, a multiple sequence alignment editor and analysis workbench (2009) Bioinformatics, 25, pp. 1189-1191 
504 |a Welch, J.M., Simon, S.A., Reinhart, P.H., The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 13889-13894 
504 |a Wustmann, G., Rein, K., Wolf, R., Heisenberg, M., A new paradigm for operant conditioning of Drosophila melanogaster (1996) J. Comp. Physiol. A., 179, pp. 429-436 
504 |a Zar, J.H., (2010) Biostatistical Analysis, , Pearson Prentice-Hall, New Jersey 
504 |a Zhong, L., Bellemer, A., Yan, H., Honjo, K., Robertson, J., Hwang, R.Y., Pitt, G.S., Tracey, W.D., Thermosensory and non-thermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat sensor domains of a thermoTRP channel (2012) Cell Rep., 1, pp. 43-55 
504 |a Zopf, L.M., Lazzari, C.R., Tichy, H., Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol., 111, pp. 1341-1349 
504 |a Zopf, L.M., Lazzari, C.R., Tichy, H., Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol, , (in press) 
520 3 |a The thermal sense of triatomine bugs, vectors of Chagas disease, is unique among insects. Not only do these bugs exhibit the highest sensitivity to heat known in any animal up to date, but they can also perceive the infrared radiation emitted by the body of their warm-blooded hosts. The sensory basis of this capacity has just started to be unravelled. To shed additional light on our understanding of thermosensation, we initiated an analysis of the genetic basis of the thermal sense in Rhodnius prolixus. We tested the hypothesis that a TRPV (transient receptor potential vanilloid) channel receptor is involved in the evaluation of heat in this species. Two different approaches were adopted. Initially, we analysed the expression of a TRPV candidate for this function, i.e., RproIav, in different tissues. Subsequently, we tested the effects of capsaicin and capsazepine, two molecules known to interact with mammal TRPV1, using three different behavioural protocols for evaluating thermal responses: (1) proboscis extension response (PER), (2) thermopreference in a temperature gradient and (3) spatial learning in an operant conditioning context. Bioinformatic analyses confirmed that the characteristic features typical of the TRPV channel subfamily are found in the RproIav protein sequence. Molecular analysis showed that RproIav is expressed in R. prolixus, not only in the antennae, but also in other body structures bearing sensory organs. Behavioural experiments consistently revealed that capsaicin treated insects are less responsive to heat stimuli and prefer lower temperatures than non-treated insects, and that they fail to orient in space. Conversely, capsazepine induces the opposite behaviours. The latter data suggest that triatomine thermoreception is based on the activation of a TRP channel, with a similar mechanism to that described for mammal TRPV1. The expression of RproIav in diverse sensory structures suggests that this receptor channel is potentially involved in bug thermoreception. This constitutes solid evidence that thermosensation could be based on the activation of TRP receptors that are expressed in different tissues in R. prolixus. Whether RproIav channel is a potential target for the compounds tested and whether it mediates the observed effects on behaviour still deserves to be confirmed by further research. © 2015 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Fondation Fyssen 
536 |a Detalles de la financiación: European Commission 
536 |a Detalles de la financiación: Seventh Framework Programme 
536 |a Detalles de la financiación: Centre National de la Recherche Scientifique 
536 |a Detalles de la financiación: This work received support from the program Science without borders (400091/2013-5, CNPq, Brazil), the CNRS and the University of Tours (France) and Marie Curie Actions IRSES N° 319015 (IBIAL, FP7, European Union). Authors whish to thank the reviewers for their helpful criticism and valuable comments. The work of JEC was possible thanks to a post-doctoral fellowship from Fyssen Foundation (France). 
593 |a Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université François Rabelais de Tours, France 
593 |a Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Brazil 
593 |a Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a CAPSAICIN 
690 1 0 |a CAPSAZEPINE 
690 1 0 |a CHAGAS DISEASE VECTORS 
690 1 0 |a THERMAL SENSE 
690 1 0 |a TRPV 
690 1 0 |a DATA SET 
690 1 0 |a DISEASE VECTOR 
690 1 0 |a HEAT BALANCE 
690 1 0 |a INFRARED RADIATION 
690 1 0 |a INSECT 
690 1 0 |a LOW TEMPERATURE 
690 1 0 |a ORGANIC COMPOUND 
690 1 0 |a PARASITIC DISEASE 
690 1 0 |a PHYSIOLOGICAL RESPONSE 
690 1 0 |a PROTEIN 
690 1 0 |a TEMPERATURE EFFECT 
690 1 0 |a ANIMALIA 
690 1 0 |a HEXAPODA 
690 1 0 |a MAMMALIA 
690 1 0 |a RHODNIUS PROLIXUS 
690 1 0 |a CAPSAICIN 
690 1 0 |a CAPSAZEPINE 
690 1 0 |a VANILLOID RECEPTOR 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANALOGS AND DERIVATIVES 
690 1 0 |a ANIMAL 
690 1 0 |a ANIMAL BEHAVIOR 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENETICS 
690 1 0 |a HEAT 
690 1 0 |a INSTRUMENTAL CONDITIONING 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR GENETICS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a RHODNIUS 
690 1 0 |a SPATIAL LEARNING 
690 1 0 |a TEMPERATURE 
690 1 0 |a TEMPERATURE SENSE 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANIMALS 
690 1 0 |a BEHAVIOR, ANIMAL 
690 1 0 |a CAPSAICIN 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a CONDITIONING, OPERANT 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HOT TEMPERATURE 
690 1 0 |a INSECT VECTORS 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a RHODNIUS 
690 1 0 |a SPATIAL LEARNING 
690 1 0 |a TEMPERATURE 
690 1 0 |a THERMOSENSING 
690 1 0 |a TRPV CATION CHANNELS 
700 1 |a Latorre-Estivalis, J.M. 
700 1 |a Crespo, J.E. 
700 1 |a Lorenzo, M.G. 
700 1 |a Lazzari, C.R. 
773 0 |d Elsevier Ltd, 2015  |g v. 81  |h pp. 145-156  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939435397&doi=10.1016%2fj.jinsphys.2015.07.014&partnerID=40&md5=8712b7e5d2e85214b59638a3be8aa21c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2015.07.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v81_n_p145_Zermoglio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v81_n_p145_Zermoglio  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v81_n_p145_Zermoglio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74172