Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation

Optimization of laccase production in white-rot fungi has been extensively studied. Metallic and aromatic compounds have been found to enhance enzyme production, but the development of bioremediation as an application field of this enzyme requires clean technologies. In this work, co-cultivation of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kuhar, F.
Otros Autores: Castiglia, V., Levin, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11962caa a22012017a 4500
001 PAPER-13206
003 AR-BaUEN
005 20230518204330.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84932615582 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IBBIE 
100 1 |a Kuhar, F. 
245 1 0 |a Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Kuhar, F.; Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Archibald, F., Anew assay for lignin-type peroxidases employing the dye azure B (1992) Appl. Environ. Microbiol., 58, pp. 3110-3116 
504 |a Baldrian, P., Increase of laccase activity during interspecific interactions of white rot fungi (2004) FEMS Microbiol. Ecol., 50, pp. 245-253 
504 |a Bourbonnais, R., Leech, D., Paice, M., Electrochemical analysis of the interactions of laccase mediators with lignin model compounds (1998) Biochim. Biophys. Acta, 1379, pp. 381-390 
504 |a Carabajal, M., Levin, L., Albertó, E., Lechner, B., Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification (2012) Int. Biodeterior. Biodegrad., 66, pp. 71-76 
504 |a Cheng, H., Zhan, H., Fu, S., Lucia, L., Alkali extraction of hemicellulose from depithed corn stover and effects on soda-AQ pulping (2010) BioResources, 11, pp. 196-206 
504 |a Chi, Y., Hatakka, A., Maijala, P., Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? (2007) Int. Biodeterior. Biodegrad., 59, pp. 32-39 
504 |a Davidson, R., Campbell, W., Blaisdell, D., Differentiation of wood-decaying fungi by their reactions on gallic or tannic acid medium (1938) J.Agric. Res., 57, pp. 683-695 
504 |a Dong, Y.C., Wang, W., Hu, Z.C., Fu, M.L., Chen, Q.H., The synergistic effect on production of lignin-modifying enzymes through submerged co-cultivation of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora using agricultural residues (2012) Bioprocess Biosyst. Eng., 35, pp. 751-760 
504 |a Edens, W.A., Goins, T.Q., Dooley, D., Henson, J.M., Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici (1999) Appl. Environ. Microbiol., 65, pp. 3071-3074 
504 |a Eichlerová, I., Šnajdr, J., Baldrian, P., Laccase activity in soils: considerations for the measurement of enzyme activity (2012) Chemosphere, 88, pp. 1154-1160 
504 |a Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., Sannia, G., Laccases: a never-ending story (2010) Cell. Mol. Life Sci., 67, pp. 369-385 
504 |a He, R., Liu, X., Yan, Z., Enhancement of laccase activity by combining white rot fungal strains (2010) J.Environ. Sci., 31, pp. 465-471 
504 |a Janusz, G., Kucharzyk, K., Pawlik, A., Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation (2013) Enzyme Microb. Technol., 52, pp. 1-12 
504 |a Johannes, C., Majcherczyk, A., Hüttermann, A., Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds (1996) Appl. Microbiol. Biotechnol., 46, pp. 313-317 
504 |a Kuhar, F., Papinutti, L., Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers (2014) Rev. Argent. Microbiol., 46, pp. 144-149 
504 |a Kurtz, M.B., Champe, S.P., Purification and characterization of the conidial laccase of Aspergillus nidulans (1982) J.Bacteriol., 151, pp. 1338-1345 
504 |a Lechner, B.E., Papinutti, V.L., Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw (2006) Process Biochem., 41, pp. 594-598 
504 |a Lettera, V., Piscitelli, A., Leo, G., Birolo, L., Pezzella, C., Sannia, G., Identification of a new member of Pleurotus ostreatus laccase family from mature fruiting body (2010) Fungal Biol., 114, pp. 724-730 
504 |a Levin, L., Forchiassin, F., Viale, A., Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett-Burman experimental design to evaluate nutritional requirements (2005) Process Biochem., 40, pp. 1381-1387 
504 |a Levin, L., Villalba, L., Da Re, V., Forchiassin, F., Papinutti, V.L., Comparative studies of loblolly pine biodegradation and enzyme production by Argentinean white rot fungi focused on biopulping processes (2007) Process Biochem., 42, pp. 995-1002 
504 |a Li, K., Xu, F., Eriksson, K., Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound (1999) Appl. Environ. Microbiol., 65, pp. 2654-2660 
504 |a Liers, C., Pecyna, M.J., Kellner, H., Worrich, A., Zorn, H., Steffen, K.T., Hofrichter, M., Ullrich, R., Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases (2013) Appl. Microbiol. Biotechnol., 97, pp. 5839-5849 
504 |a Litvintseva, A.P., Henson, J.M., Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus (2002) Appl. Environ. Microbiol., 68, pp. 1305-1311 
504 |a Maalej-Kammoun, M., Zouari-Mechichi, H., Belbahri, L., Woodward, S., Mechichi, T., Malachite green decolourization and detoxification by the laccase from a newly isolated strain of Trametes sp (2009) Int. Biodeterior. Biodegrad., 63, pp. 600-606 
504 |a Murugesan, K., Yang, I.H., Kim, Y.M., Jeon, J.R., Chang, Y.S., Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds (2009) Appl. Microbiol. Biotechnol., 82, pp. 341-350 
504 |a Papinutti, V.L., Forchiassin, F., Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium (2004) FEMS Microbiol. Lett., 231, pp. 205-209 
504 |a Papinutti, V.L., Forchiassin, F., Enzymes of white rot fungi involved in lignin degradation (2006) Rev. Argent. Microbiol., 32, pp. 83-88 
504 |a Paszczyński, A., Crawford, R., Huynh, V., Manganese peroxidase of Phanerochaete chrysosporium: purification (1988) Methods Enzym., 161, pp. 264-270 
504 |a Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., Faraco, V., Induction and transcriptional regulation of laccases in fungi (2011) Curr. Genomics, 12, pp. 104-112 
504 |a Pogni, R., Brogioni, B., Baratto, M.C., Sinicropi, A., Giardina, P., Pezzella, C., Sannia, G., Basosi, R., Evidence for a radical mechanism in biocatalytic degradation of synthetic dyes by fungal laccases mediated by violuric acid (2007) Biocatal. Biotransform., 25, pp. 269-275 
504 |a Singh, H., (2006) Mycoremediation: Fungal Bioremediation, , Wiley, Hoboken NJ 
504 |a Srivastava, S., Sinha, R., Roy, D., Toxicological effects of malachite green (2004) Aquat. Toxicol., 66, pp. 319-329 
504 |a Yang, X.Q., Zhao, X.X., Liu, C.Y., Zheng, Y.S., Qian, J., Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase (2009) Process Biochem., 44, pp. 1185-1189 
504 |a Zhang, H., Hong, Y.Z., Xiao, Y.Z., Yuan, J., Tu, X.M., Zhang, X.Q., Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain (2006) Appl. Microbiol. Biotechnol., 73, pp. 89-94 
520 3 |a Optimization of laccase production in white-rot fungi has been extensively studied. Metallic and aromatic compounds have been found to enhance enzyme production, but the development of bioremediation as an application field of this enzyme requires clean technologies. In this work, co-cultivation of Ganoderma lucidum and Trametes versicolor was performed, showing remarkable enhancement of laccase activity. Dual cultures were assayed for malachite green degradation (MG) in solid state fermentation (SSF) using a sawdust-based medium. The time for achieving complete decolorization of MG in co-cultivation was markedly shorter than that observed in monocultures. Dual-species treatment did not differ in wood dry weight loss and lignin, cellulose and hemicellulose degradation, compared to monocultures; but the selectivity index (lignin loss/cellulose loss) of dual cultures was markedly higher than those attained by monocultures. Moreover, a modified isoenzymatic laccase pattern was observed, showing one isoenzyme that was absent in monocultures. Dual cultures were able to decolorize and detoxify the dye more efficiently than the monocultures. The noticeable increase in laccase activity along with the more efficient decolorization and detoxification of MG by co-cultures of G.lucidum and T.versicolor in SSF makes this system a viable strategy for large scale application of white-rot cultures in bioremediation. © 2015 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina, and Universidad de Buenos Aires. 
593 |a Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad de Buenos Aires, Argentina 
690 1 0 |a CO-CULTIVATION 
690 1 0 |a LACCASE 
690 1 0 |a MALACHITE GREEN 
690 1 0 |a WHITE-ROT FUNGI 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a CARBONATE MINERALS 
690 1 0 |a CELLULOSE 
690 1 0 |a DETOXIFICATION 
690 1 0 |a FERMENTATION 
690 1 0 |a FUNGI 
690 1 0 |a LIGNIN 
690 1 0 |a WOOD 
690 1 0 |a CELLULOSE AND HEMICELLULOSE 
690 1 0 |a CO-CULTIVATION 
690 1 0 |a LACCASES 
690 1 0 |a LARGE-SCALE APPLICATIONS 
690 1 0 |a MALACHITE GREEN 
690 1 0 |a SOLID-STATE FERMENTATION 
690 1 0 |a TRAMETES VERSICOLOR 
690 1 0 |a WHITE ROT FUNGI 
690 1 0 |a ENZYMES 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FERMENTATION 
690 1 0 |a FUNGAL DISEASE 
690 1 0 |a FUNGUS 
690 1 0 |a MALACHITE 
690 1 0 |a MONOCULTURE 
690 1 0 |a OPTIMIZATION 
690 1 0 |a FERMENTATION 
690 1 0 |a LACCASE 
690 1 0 |a PRODUCTION 
690 1 0 |a FUNGI 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a TRAMETES VERSICOLOR 
650 1 7 |2 spines  |a COLOR 
700 1 |a Castiglia, V. 
700 1 |a Levin, L. 
773 0 |d Elsevier Ltd, 2015  |g v. 104  |h pp. 238-243  |p Int. Biodeterior. Biodegrad.  |x 09648305  |w (AR-BaUEN)CENRE-5193  |t International Biodeterioration and Biodegradation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932615582&doi=10.1016%2fj.ibiod.2015.06.017&partnerID=40&md5=6d3529eb08d6e4fbdee2575d04f92e52  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ibiod.2015.06.017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09648305_v104_n_p238_Kuhar  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09648305_v104_n_p238_Kuhar  |y Registro en la Biblioteca Digital 
961 |a paper_09648305_v104_n_p238_Kuhar  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74159