Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions

To elucidate the influence of bi-substitution on the structural and hyperfine properties of goetites, two series of (Al,Co)- and (Mn,Co)-substituted goethites were synthesized in alkaline media by aging several ferrihydrites with different Al/Co and Mn/Co ratios. The samples were fully characterized...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez, M.
Otros Autores: Tufo, A.E, Zenobi, C., Ramos, C.P, Sileo, E.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13557caa a22013337a 4500
001 PAPER-13178
003 AR-BaUEN
005 20230518204327.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84941208204 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alvarez, M. 
245 1 0 |a Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions 
260 |b Elsevier  |c 2015 
270 1 0 |m Tufo, A.E.; INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad UniversitariaArgentina 
506 |2 openaire  |e Política editorial 
504 |a Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite (2005) Chem. Geol., 216, pp. 89-97 
504 |a Alvarez, M., Rueda, E.H., Sileo, E.E., Simultaneous incorporation of Mn and Al in the goethite structure (2007) Geochim. Cosmochim. Acta, 71 (4), pp. 1009-1020 
504 |a Alvarez, M., Sileo, E.E., Rueda, E.H., Structure and reactivity of synthetic Co-substituted goethites (2008) Am. Mineral., 93, pp. 584-590 
504 |a Aquino, A.J., Tunega, D., Haberhauer, G., Gerzabek, M.H., Lischka, H., Quantum chemical adsorption studies on the (110) surface of the mineral goethite (2007) J. Phys. Chem. C, 111 (2), p. 877 
504 |a Brand, R.A., (1991) Normos Programs (SITE-DIST), , Duisburg University 
504 |a Cornell, R.M., Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure (1991) Clay Miner., 26, pp. 427-430 
504 |a Cornell, R.M., Schwertmann, U., (2000) The Iron Oxides, Structure, Reactions, Occurrence and Uses, , VCH, Weinheim, Germany 
504 |a De Grave, E., Barrero, C.A., Da Costa, G.M., Vandenberghe, R.E., Van San, E., Mössbauer spectra of α-and γ-polymorphs of FeOOH and Fe2O3: effects of poor crystallinity and of Al-for-Fe substitution (2002) Clay Miner., 37, pp. 591-606 
504 |a Dos Santos, A.C., Horbe, A.M.C., Barcellos, C.M.O., Marimon da Cunha, J.B., Some structure and magnetic effects of Ga incorporation on α-FeOOH (2001) Solid State Commun., 118, pp. 449-452 
504 |a Ferreira, T.A.S., Waerenborgh, J.C., Mendonça, M.H.R.M., Nunes, M.R., Costa, F.M., Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method (2003) Solid State Sci., 5, pp. 383-392 
504 |a González, E., Ballesteros, M.C., Rueda, E.H., Reductive dissolution kinetics of Al-substituted goethites (2002) Clays Clay Miner., 50 (4), pp. 470-477 
504 |a Guimaraes, I.R., Giroto, A., Oliveira, L.C.A., Guerreiro, M.C., Lima, D.Q., Fabris, J.D., Synthesis and thermal treatment of Cu-doped goethite: oxidation of quinoline through heterogeneous Fenton process (2009) Appl. Catal. B Environ., 91, pp. 581-586 
504 |a Kaur, N., Gräfe, M., Singh, B., Kennedy, B.J., Simultaneous incorporation of Cr, Zn, Cd, and Pb in the goethite structure (2009) Clays Clay Miner., 57 (2), pp. 234-250 
504 |a Kaur, N., Singh, B., Kennedy, B.J., Copper substitution alone and in the presence of chromium, zinc, cadmium and lead in goethite (α-FeOOH) (2009) Clay Miner., 44 (3), pp. 293-310 
504 |a Kosmulski, M., Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature (2009) Adv. Colloid Interface Sci., 152, pp. 14-25 
504 |a Krehula, S., Musić, S., Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media (2006) J. Alloys Compd., 426, pp. 327-334 
504 |a Krehula, S., Musić, S., Influence of cobalt ions on the precipitation of goethite in highly alkaline media (2008) Clay Miner., 43 (1), pp. 95-105 
504 |a Krehula, S., Musić, S., The influence of a Cr-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media (2009) J. Alloys Compd., 469, pp. 336-342 
504 |a Krehula, S., Musić, S., Popović, S., Influence of Ni-dopant on the properties of synthetic goethite (2005) J. Alloys Compd., 403, pp. 368-375 
504 |a Larson, A.C., Von Dreele, R.B., General structure analysis system (GSAS) (1996) Los Alamos National Laboratory Report LAUR, pp. 86-748 
504 |a Long, G.J., Cranshaw, T.E., Longworth, G., The ideal Mössbauer effect absorber thickness (1983) Mössbauer Effect Ref. Data J., 6, pp. 42-49 
504 |a Manceau, A., Schlegel, M.L., Musso, M., Sole, V.A., Gauthier, C., Petit, P.E., Trolard, F., Crystal chemistry of trace elements in natural and synthetic goethite (2000) Geochim. Cosmochim. Acta, 64, pp. 3643-3661 
504 |a Murad, E., The characterization of goethite by Mössbauer spectroscopy (1982) Am. Mineral., 67, pp. 1007-1011 
504 |a Murad, E., Bowen, L.H., Magnetic ordering in Al-rich goethites; influence of crystallinity (1987) Am. Mineral., 72, pp. 194-200 
504 |a Murad, E., Johnston, J.H., (1987) Mössbauer Spectroscopy Applied to Inorganic Chemistry, pp. 507-582. , Plenum Publishing Corporation, New York 
504 |a Schwertmann, U., Taylor, R.M., (1989) Minerals in Soil Environments, pp. 380-438. , Soil Sci. Soc. Am, Madison, WI, J.B. Dixon, S.B. Weed (Eds.) 
504 |a Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (1976) Acta Crystallogr. Sect. A: Found. Crystallogr., 32, pp. 751-767 
504 |a Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279 
504 |a Sileo, E.E., García, R.L., Paiva-Santos, C.O., Stephens, P.W., Morando, P.J., Blesa, M.A., Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites (2006) J. Solid State Chem., 179 (7), pp. 2237-2244 
504 |a Singh, B., Gräfe, M., Kaur, N., Liese, A., Applications of synchrotron-based x-ray diffraction and x-ray absorption spectroscopy to the understanding of poorly crystalline and metal-substituted iron oxides (2010) Dev. Soil. Sci., 34, pp. 199-254 
504 |a Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Phys. Status Solidi B, 26 (2), pp. 429-434 
504 |a Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83 
504 |a Toby, B.H., EXPGUI, a graphical user interface for GSAS (2002) J. Appl. Crystallogr., 34, pp. 210-213 
504 |a Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry, , Wiley, NewYork, NY 
504 |a Vandenberghe, R.E., (1991) Mössbauer Spectroscopy and Applications in Geology, , Apostilha International Training Centre for Post-Graduate Soil Scientists 
504 |a Vega, F.A., Covelo, E.F., Andrade, M.L., Marcet, P., Relationships between heavy metals content and soil properties in mine soils (2004) Anal. Chim. Acta, 524, pp. 141-150 
520 3 |a To elucidate the influence of bi-substitution on the structural and hyperfine properties of goetites, two series of (Al,Co)- and (Mn,Co)-substituted goethites were synthesized in alkaline media by aging several ferrihydrites with different Al/Co and Mn/Co ratios. The samples were fully characterized by chemical analyses, X-ray diffraction (XRD) and Mössbauer spectroscopy; scanning electron microscopy (SEM), zeta potential and BET surface area measurements were also performed. All the solids presented only an α-FeOOH-like structure, with the exception of two preparations with high Co concentrations that developed two phases, goethite and small amounts of the Co-ferrite (CoFe2O4). The cell parameters in the Co-substituted goethites were markedly smaller than that of the pure sample indicating a oxidation of Co(II) to Co(III) before the incorporation step. In the Co+Mn series the metal substitution followed the trend Co~Mn, and in the Co+Al series the trend was Al>Co, and in both cases the incorporation of Co decreased the crystallite size of the samples. The metal-for-Fe incorporation changed the specific surface areas and the morphology of the acicular formed particles. Cobalt containing samples had the highest SSA, while Mn-containing samples had the lowest SSA. The IEP values of the bi-substituted samples were similar to that of pure α-FeOOH, but mono-substitution by Mn and Al diminished the isoelectric points. The low IEP values detected in Mn-goethite (5.8) and Al-goethite (5.2) could be respectively ascribed to an inhomogeneous distribution of Mn(III), and to the different basicity properties of the surface Fe-OH and Al-OH groups. The hyperfine magnetic field Bhf, increased quasi linearly with the incorporation of Co in both series. In the Co-Mn series the effect was attributed to variations in particle size distribution, in contrast the marked increase observed in the Co-Al series can be attributed to the decrease in the content of diamagnetic ion Al(III). The results indicate that simultaneous substitutions produce substantial changes in the structural, surface and hyperfine properties of goethites. As the characteristics of the dissolution and adsorption processes of the goethites greatly depend on particle size, BET areas and surface charge of the solids, the reported results will allow us to predict changes in the chemical reactivity and adsorption of the multi-substituted goethites. Also the data on hyperfine properties will help to elucidate the probable substitution in natural samples. The fact that Co-incorporation in bi-substituted samples greatly decreased the particle size increasing the specific surface area is an important parameter for technological applications in adsorption removal processes. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, 24/Q051 
536 |a Detalles de la financiación: Secretaría de Ciencia y Tecnología, Gobierno de la Provincia de Córdoba 
536 |a Detalles de la financiación: This research was supported by grants PICT 2008-0780 ( Agencia Nacional de Promoción Científica y Tecnológica ) and 24/Q051 ( Secretaría de Ciencia y Tecnología, UNS ). Authors are also thankful to Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET). 
593 |a INQUISUR, Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, Bahía Blanca, B8000CPB, Argentina 
593 |a INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
593 |a Gerencia Investigación y Aplicaciones, Centro Atómico Constituyentes - Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín (1650), Buenos Aires, Argentina 
690 1 0 |a AL- 
690 1 0 |a CO- 
690 1 0 |a CO-FERRITE 
690 1 0 |a HYPERFINE PROPERTIES 
690 1 0 |a MN-GOETHITES 
690 1 0 |a MULTI-SUBSTITUTION 
690 1 0 |a RIETVELD REFINEMENT 
690 1 0 |a ADSORPTION 
690 1 0 |a ALKALINITY 
690 1 0 |a ALUMINUM 
690 1 0 |a CHEMICAL ANALYSIS 
690 1 0 |a COBALT 
690 1 0 |a CRYSTALLITE SIZE 
690 1 0 |a FERRITE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a PARTICLE SIZE ANALYSIS 
690 1 0 |a RIETVELD REFINEMENT 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SPECIFIC SURFACE AREA 
690 1 0 |a STRUCTURAL PROPERTIES 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a BET SURFACE AREA MEASUREMENT 
690 1 0 |a CO FERRITES 
690 1 0 |a HYPERFINE CHARACTERIZATION 
690 1 0 |a HYPERFINE MAGNETIC FIELDS 
690 1 0 |a HYPERFINES 
690 1 0 |a INHOMOGENEOUS DISTRIBUTION 
690 1 0 |a SSBAUER SPECTROSCOPIES 
690 1 0 |a TECHNOLOGICAL APPLICATIONS 
690 1 0 |a MANGANESE 
690 1 0 |a ADSORPTION 
690 1 0 |a ALUMINUM 
690 1 0 |a COBALT 
690 1 0 |a DISSOLUTION 
690 1 0 |a FERRITE 
690 1 0 |a GOETHITE 
690 1 0 |a ION 
690 1 0 |a ISOTOPIC RATIO 
690 1 0 |a MANGANESE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a RIETVELD ANALYSIS 
690 1 0 |a SIZE DISTRIBUTION 
700 1 |a Tufo, A.E. 
700 1 |a Zenobi, C. 
700 1 |a Ramos, C.P. 
700 1 |a Sileo, E.E. 
773 0 |d Elsevier, 2015  |g v. 414  |h pp. 16-27  |p Chem. Geol.  |x 00092541  |w (AR-BaUEN)CENRE-4154  |t Chemical Geology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941208204&doi=10.1016%2fj.chemgeo.2015.08.022&partnerID=40&md5=95ef76c75b4e41e39156d9f56a93069f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.chemgeo.2015.08.022  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00092541_v414_n_p16_Alvarez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v414_n_p16_Alvarez  |y Registro en la Biblioteca Digital 
961 |a paper_00092541_v414_n_p16_Alvarez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74131