Categorical foundations for structured specifications in Z

In this paper we present a formalization of the Z notation and its structuring mechanisms. One of the main features of our formal framework, based on category theory and the theory of institutions, is that it enables us to provide an abstract view of Z and its related concepts. We show that the main...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Castro, P.F
Otros Autores: Aguirre, N., Pombo, C.L, Maibaum, T.S.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag London Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09697caa a22010457a 4500
001 PAPER-13176
003 AR-BaUEN
005 20230518204327.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84947613166 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FACME 
100 1 |a Castro, P.F. 
245 1 0 |a Categorical foundations for structured specifications in Z 
260 |b Springer-Verlag London Ltd  |c 2015 
270 1 0 |m Castro, P.F.; Departamento de Computación, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nac. No. 36 Km. 601, Argentina; email: pcastro@dc.exa.unrc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Baar, T., Strohmeier, A., Moreira, A., Mellor, S., UML 2004 (2004) Lecture notes in computer science, 3273. , Springer, Berlin 
504 |a Barr, M., Wells, C., Category theory for computer science (1999) In, , Centre de Recherches Mathématiques, Université de Montréal 
504 |a Baumeister, H., Relating abstract datatypes and Z-schemata (1999) Proc. of WADT ’99. Lecture notes in computer science, 1827, pp. 366-382. , Springer, Berlin 
504 |a Bérnabou, J., Introduction to bicategories (1967) Complementary definitions of programming language semantics. LNM, 42, pp. 1-77. , Springer, Berlin 
504 |a Borzyszkowski, T., Higher-order logic and theorem proving for structured specifications (1999) Proc. of WADT ’99. Lecture notes in computer science, 1827. , Springer, Berlin 
504 |a Brien, S.M., Martin, A.P., A calculus for schemas in Z (2000) J Symb Comput, 30 (1), pp. 63-91 
504 |a Bujorianu, M.C., Integration of specification languages using viewpoints (2004) Proc. of IFM ’04. Lecture notes in computer science, 2999. , Springer, Berlin 
504 |a Castro, P.F., Aguirre, N., Lopez Pombo, C.G., Maibaum, T.S.E., A categorical approach to structuring and promoting Z specifications (2012) Proc. of FACS’12. Lecture notes in computer science, 7684. , Springer, Berlin 
504 |a Chang, C.C., Keisler, H.J., (1990) Model theory, , North Holland: NY 
504 |a Diaconescu, R., (2008) Institution-independent model theory, , Birkhäuser Verlag, Basel 
504 |a Enderton, H., (2001) A mathematical introduction to logic, , Academic Press, Dublin 
504 |a Fiadeiro, J., (2004) Categories for software engineering, , Springer, Berlin 
504 |a Fiadeiro, J., Maibaum, T.S.E., Temporal theories as modularisation units for concurrent system specification (1992) Form Asp Comput, 4 (3), pp. 239-272 
504 |a Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M., Viewpoints: a framework for integrating multiple perspectives in system development (1992) Int J Softw Eng Knowl Eng, 2 (1), pp. 31-57 
504 |a Fischer, C., (1997) Combining CSP and Z, , Technical Report: University of Oldenburg 
504 |a Goguen, J., Burstall, R., Institutions: abstract model theory for specification and programming (1992) J ACM, 39 (1), pp. 95-146 
504 |a Henson, M., Reeves, S., Revising Z: part I—logic and semantics (1999) Form Asp Comput, 11 (4), pp. 359-380 
504 |a Henson, M., Reeves, S., Revising Z: part II—logical development (1999) Form Asp Comput, 11 (4), pp. 381-401 
504 |a Hoare, C.A.R., Jifeng, H., Unifying theories of programming (1998), Prentice Hall College Division, Englewood Cliffs; Jacky, J., (1997) The way of Z, practical programming with formal methods, , Cambridge University Press, Cambridge 
504 |a Lano, K., Model-driven software development with UML and java (2009) Course Technology 
504 |a MacLane, S., (1998) Categories for the working mathematician, , Springer, Berlin 
504 |a Meyer, B., (2000) Object-oriented software construction, , Prentice Hall, Englewood Cliffs 
504 |a Mossakowski, T., Maeder, C., Lüttich, K., The heterogeneous tool set (hets). In: Proc (2007) of 4th international verification workshop in connection with CADE-21, , http://CEUR-WS.org 
504 |a Nicholls, J., Z notation: version 1.2 (1995) Z standards panel 
504 |a Mossakowski, T., Pawlowski, T.A., Combining and representing logical systems (1997) Proc. of category theory and computer science’97. Lecture notes in computer science, 1290. , Springer, Berlin 
504 |a Mossakowski, T., Roggenbach, M., Structured CSP—a process algebra as an institution (2006) Proc. of WADT’06. Lecture notes in computer science, 4409. , Springer, Berlin 
504 |a Oliveira, M., Cavalcanti, A., Woodcock, J., A UTP semantics for circus (2009) Form Asp Comput, 21 (2), pp. 3-32 
504 |a Parnas, D., On the criteria to be used in decomposing systems into modules (1972) Commun. ACM, 15 (12), pp. 1053-1058 
504 |a Parnas, D., The modular structure of complex system (1985) IEEE Trans Softw Eng, 11 (3), pp. 259-266 
504 |a Risk! Rules of Play (1963) Parker Brothers; Spivey, J.M., Towards a formal semantics for the Z notation. Oxford University Computing Laboratory, T.M (1984) PRG-41 
504 |a Spivey, J.M., Understanding Z: a specification language and its formal semantics (1988) Cambridge Tracts in Theoretical Computer Science 
504 |a Spivey, J.M., The Z notation: a reference manual (1992), Prentice Hall, Englewood Cliffs; Tarlecki, A., Moving between logical systems (1995) Proc. of ADT/COMPASS’95. Lecture notes in computer science, 1130. , Springer, Berlin 
504 |a Webber, M., Combining statecharts and Z for the design of safety-critical control systems (1996) Proc. of FME’96. Lecture notes in computer science, 1051. , Springer, Berlin 
504 |a Woodcock, J., Mathematics as a management tool: proof rules for promotion (1990) In: Software engineering for large software systems, , Springer, Netherlands 
504 |a Woodcock, J., Davies, J., (1996) Using Z: specification, refinement, and proof, , Prentice Hall, Englewood Cliffs 
504 |a Woodcock, J., Cavancanti, A., Circus: a concurrent refinement language (2001) Technical report, , Oxford University Computing Laboratory, Oxford, UK 
520 3 |a In this paper we present a formalization of the Z notation and its structuring mechanisms. One of the main features of our formal framework, based on category theory and the theory of institutions, is that it enables us to provide an abstract view of Z and its related concepts. We show that the main structuring mechanisms of Z are captured smoothly by categorical constructions. In particular, we provide a straightforward and clear semantics for promotion, a powerful structuring technique that is often not presented as part of the schema calculus. Here we show that promotion is already an operation over schemas (and more generally over specifications), that allows one to promote schemas that operate on a local notion of state to operate on a subsuming global state, and in particular can be used to conveniently define large specifications from collections of simpler ones. Moreover, our proposed formalization facilitates the combination of Z with other notations in order to produce heterogeneous specifications, i.e., specifications that are obtained by using various different mathematical formalisms. Thus, our abstract and precise formulation of Z is useful for relating this notation with other formal languages used by the formal methods community. We illustrate this by means of a known combination of formal languages, namely the combination of Z with CSP. © 2015, British Computer Society.  |l eng 
593 |a Departamento de Computación, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nac. No. 36 Km. 601, Río Cuarto, Córdoba, 5800, Argentina 
593 |a Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Department of Computing and Software, McMaster University, Hamilton, ON, Canada 
690 1 0 |a CATEGORY THEORY 
690 1 0 |a HETEROGENEOUS SPECIFICATIONS 
690 1 0 |a SYSTEM SPECIFICATION 
690 1 0 |a SYSTEM VERIFICATION 
690 1 0 |a Z NOTATION 
690 1 0 |a CALCULATIONS 
690 1 0 |a COMPUTATIONAL LINGUISTICS 
690 1 0 |a COMPUTER HARDWARE DESCRIPTION LANGUAGES 
690 1 0 |a FORMAL LANGUAGES 
690 1 0 |a FORMAL METHODS 
690 1 0 |a FORMAL SPECIFICATION 
690 1 0 |a SEMANTICS 
690 1 0 |a CATEGORY THEORY 
690 1 0 |a FORMAL FRAMEWORK 
690 1 0 |a MATHEMATICAL FORMALISM 
690 1 0 |a STRUCTURED SPECIFICATION 
690 1 0 |a STRUCTURING MECHANISMS 
690 1 0 |a SYSTEM SPECIFICATION 
690 1 0 |a SYSTEM VERIFICATIONS 
690 1 0 |a Z NOTATION 
690 1 0 |a SPECIFICATIONS 
700 1 |a Aguirre, N. 
700 1 |a Pombo, C.L. 
700 1 |a Maibaum, T.S.E. 
773 0 |d Springer-Verlag London Ltd, 2015  |g v. 27  |h pp. 831-865  |k n. 5-6  |p Formal Aspects Comput  |x 09345043  |t Formal Aspects of Computing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947613166&doi=10.1007%2fs00165-015-0336-0&partnerID=40&md5=3a9f18e3eaa4d004b0d6588e50155c8c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00165-015-0336-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09345043_v27_n5-6_p831_Castro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09345043_v27_n5-6_p831_Castro  |y Registro en la Biblioteca Digital 
961 |a paper_09345043_v27_n5-6_p831_Castro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74129