Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina

Glyphosate (GLY) and AMPA concentrations were determined in sandy soil profiles, during pre- and post-application events in two agricultural soybean fields (S1 and S2). Streamwater and sediment samples were also analyzed. Post-application sampling was carried out one month later from the event. Conc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lupi, L.
Otros Autores: Miglioranza, K.S.B, Aparicio, Virginia Carolina, Marino, D., Bedmar, F., Wunderlin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17428caa a22018977a 4500
001 PAPER-13123
003 AR-BaUEN
005 20250623112920.0
008 170725s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84940062539 
024 7 |2 cas  |a 2 aminoethylphosphonic acid, 2041-14-7; glyphosate, 1071-83-6; alpha amino 3 hydroxy 5 methyl 4 isoxazolepropionic acid, 77521-29-0; glycine, 56-40-6, 6000-43-7, 6000-44-8; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Glycine; glyphosate; Herbicides; Pesticide Residues; Water Pollutants, Chemical 
030 |a STEVA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lupi, L. 
245 1 0 |a Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina 
260 |b Elsevier  |c 2015 
270 1 0 |m Miglioranza, K.S.B.; Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de, Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y, Naturales, Univ. Nacional de Mar del Plata Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), D. Funes 3350, Argentina 
504 |a Albers, C.N., Banta, G.T., Hansen, P.E., Jacobsen, O.S., Erik, P., Jacobsen, O.S., The influence of organic matter on sorption and fate of glyphosate in soil-comparing different soils and humic substances (2009) Environ. Pollut., 157, pp. 2865-2870 
504 |a Aparicio, V.C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., Costa, J.L., Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins (2013) Chemosphere, 93, pp. 1866-1873 
504 |a Arancibia, F., Challenging the bioeconomy: the dynamics of collective action in Argentina (2013) Technol. Soc., 35, pp. 79-92 
504 |a Arvidsson, T., Bergström, L., Kreuger, J., Spray drift as influenced by meteorological and technical factors (2011) Pest Manag. Sci., 67, pp. 586-598 
504 |a Battaglin, W.A., Meyer, M.T., Kuivila, K.M., Dietze, J.E., Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation (2014) J. Am. Water Resour. Assoc., 50, pp. 275-290 
504 |a Bending, G.D., Rodriguez-Cruz, M.S., Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon (2007) Chemosphere, 66, pp. 664-671 
504 |a Borggaard, O.K., Gimsing, A.L., Fate of glyphosate in soil and the possibility of leaching to ground and surface waters : a review (2008) Pest Manag. Sci., 456, pp. 441-456 
504 |a Candela, L., Caballero, J., Ronen, D., Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions-Barcelona, Spain (2010) Sci. Total Environ., 408, pp. 2509-2516 
504 |a Chang, F., Simcik, M.F., Capel, P.D., Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere (2011) Environ. Toxicol. Chem., 30, pp. 548-555 
504 |a Coupe, R.H., Kalkhoff, S.J., Capel, P.D., Gregoire, C., Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins (2012) Pest Manag. Sci., 68, pp. 16-30 
504 |a De Roos, A.J., Blair, A., Rusiecki, J.A., Hoppin, J.A., Svec, M., Dosemeci, M., Sandler, D.P., Alavanja, M.C., Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study (2005) Environ. Health Perspect., 113, pp. 49-54 
504 |a Dion, H.M., Harsh, J.B., Hill, H.H., Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils (2001) J. Radioanal. Nucl. Chem., 249, pp. 385-390 
504 |a Farenhorst, A., Andronak, L.A., McQueen, R.D.A., Bulk deposition of pesticides in a Canadian City: part 1. Glyphosate and other agricultural pesticides (2015) Water Air Soil Pollut., 226 
504 |a Gee, G.W., Bauder, J.W., Particle size analysis (1986) Methods of Soil Analysis, , Physical and Minerological Methods, second ed. Agronomy, Madison, A. Klute (Ed.) 
504 |a Gimsing, A.L., Borggaard, O.K., Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides (2002) Clay Miner., 37, pp. 509-515 
504 |a Gimsing, A.L., Borggaard, O.K., Jacobsen, O.S., Aamand, J., Sørensen, J., Chemical and microbiological soil characteristics controlling glyphosate mineralisation in Danish surface soils (2004) Appl. Soil Ecol., 27, pp. 233-242 
504 |a Grondona, S., Gonzalez, M., Martínez, D.E., Massone, H.E., Miglioranza, K.S.B., Endosulfan leaching from Typic Argiudolls in soybean tillage areas and groundwater pollution implications (2014) Sci. Total Environ., 484, pp. 146-153 
504 |a Hanke, I., Singer, H., Hollender, J., Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection (2008) Anal. Bioanal. Chem., 391, pp. 2265-2276 
504 |a Holterman, H.J., (2003) Kinetics and Evaporation of Water Drops in Air 
504 |a (2015) World Health Organization, , http://www.iarc.fr/en/media-centre/iarcnews/pdf/MonographVolume112.pdf, Last access July 29, 2015 
504 |a Ibáñez, M., Pozo Ó, J., Sancho, J.V., López, F.J., Hernández, F., Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry (2005) J. Chromatogr. A, 1081, pp. 145-155 
504 |a Jensen, P.K., Olesen, M.H., Spray mass balance in pesticide application: a review (2014) Crop. Prot., 61, pp. 23-31 
504 |a Kjær, J., Ernsten, V., Jacobsen, O.H., Hansen, N., de Jonge, L.W., Olsen, P., Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils (2011) Chemosphere, 84, pp. 471-479 
504 |a Kjær, J., Olsen, P., Ullum, M., Grant, R., Vadose zone processes and chemical transport leaching of glyphosate and amino-methylphosphonic cid from Danish agricultural field sites (2005) J. Environ. Qual., 34, pp. 608-620 
504 |a Landry, D., Dousset, S., Fournier, J.-C., Andreux, F., Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France) (2005) Environ. Pollut., 138, pp. 191-200 
504 |a Morillo, E., Undabeytia, T., Maqueda, C., Ramos, A., Glyphosate adsorption on soils of different characteristics. Influence of copper addition (2000) Chemosphere, 40, pp. 103-107 
504 |a Nelson, D.W., Sommers, L.E., Total carbon, organic carbon and organic matter (1982) Am. Soc. Agronomy, 9, pp. 539-579 
504 |a Paganelli, A., Gnazzo, V., Acosta, H., López, S.L., Carrasco, A.E., Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling (2010) Chem. Res. Toxicol., 23, pp. 1586-1595 
504 |a Pessagno, R.C., Torres Sánchez, R.M., dos Santos Afonso, M., Glyphosate behavior at soil and mineral-water interfaces (2008) Environ. Pollut., 153, pp. 53-59 
504 |a Piccolo, A., Celano, G., Hydrogen-bonding interactions between the herbicide glyphosate and water-soluble humic substances (1994) Environ. Toxicol. Chem., 13, pp. 1737-1741 
504 |a Piccolo, A., Celano, G., Conte, P., Adsorption of Glyphosate by Humic Substances (1996) J. Agric. Food Chem., 44, pp. 2442-2446 
504 |a Rampazzo, N., Rampazzo Todorovic, G., Mentler, A., Blum, W.E.H., Adsorption of glyphosate and aminomethylphosphonic acid in soils (2013) Int. Agrophys., 27, pp. 203-209 
504 |a Sandrini, J.Z., Rola, R.C., Lopes, F.M., Buffon, H.F., Freitas, M.M., Martins, C.D.M.G., da Rosa, C.E., Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies (2013) Aquat. Toxicol., 130, pp. 171-173 
504 |a Sasal, M.C., Demonte, L., Cislaghi, A., Gabioud, E.A., Oszust, J.D., Wilson, M.G., Michlig, N., Repetti, M.R., Glyphosate loss by runoff and its relationship with phosphorus fertilization (2015) J. Agric. Food Chem., , (150316132752008) 
504 |a Sheals, J., Sjöberg, S., Persson, P., Adsorption of glyphosate on goethite: molecular characterization of surface complexes (2002) Environ. Sci. Technol., 36, pp. 3090-3095 
504 |a Shipitalo, M.J., Malone, R.W., Owens, L.B., Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff (2006) J. Environ. Qual., 37, pp. 401-408 
504 |a Shushkova, T., Ermakova, I., Leontievsky, A., Glyphosate bioavailability in soil (2010) Biodegradation, 21, pp. 403-410 
504 |a Silburn, D.M., Foley, J.L., deVoil, R.C., Managing runoff of herbicides under rainfall and furrow irrigation with wheel traffic and banded spraying (2013) Agric. Ecosyst. Environ., 180, pp. 40-53 
504 |a Simonsen, L., Fomsgaard, I.S., Svensmark, B., Spliid, N.H., Fate and availability of glyphosate and AMPA in agricultural soil (2008) J. Environ. Sci. Health B, 43, pp. 365-375 
504 |a Stenrød, M., Charnay, M.P., Benoit, P., Eklo, O.M., Spatial variability of glyphosate mineralization and soil microbial characteristics in two Norwegian sandy loam soils as affected by surface topographical features (2006) Soil Biol. Biochem., 38, pp. 962-971 
504 |a Styczen, M., Petersen, C.T., Koch, C.B., Gjettermann, B., Macroscopic evidence of sources of particles for facilitated transport during intensive rain (2011) Vadose Zone J., 10, pp. 1151-1161 
504 |a Todorovic, G.R., Rampazzo, N., Mentler, A., Blum, W.E., Eder, A., Strauss, P., Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils (2014) Int. Agrophys., 28 (1), pp. 93-100 
504 |a Ulén, B., Gunborg, A., Kreuger, J., Svanbäck, A., Etana, A., Particulate-facilitated leaching of glyphosate and phosphorus from a marine clay soil via tile drains (2012) Acta Agric. Scand. Sect. B Soil Plant Sci., 62, pp. 241-251 
504 |a (2002) Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites, pp. 1-89 
504 |a Veiga, F., Zapata, J.M., Fernandez Marcos, M.L., Alvarez, E., Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain (2001) Sci. Total Environ., 271, pp. 135-144 
504 |a Vera, M.S., Lagomarsino, L., Sylvester, M., Pérez, G.L., Rodríguez, P., Mugni, H., Sinistro, R., Pizarro, H., New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems (2010) Ecotoxicology, 19, pp. 710-721 
504 |a Walkley, A., Black, C.A., Organic carbon (1965) Methods of Soil Analysis, pp. 1372-1375. , American Society of Agronomy, Mad- ison, WI, C.A. Black (Ed.) 
504 |a Yang, X., Wang, F., Bento, C.P.M., Xue, S., Gai, L., van Dam, R., Mol, H., Geissen, V., Short-term transport of glyphosate with erosion in Chinese loess soil - a flume experiment (2015) Sci. Total Environ., pp. 406-414 
506 |2 openaire  |e Política editorial 
520 3 |a Glyphosate (GLY) and AMPA concentrations were determined in sandy soil profiles, during pre- and post-application events in two agricultural soybean fields (S1 and S2). Streamwater and sediment samples were also analyzed. Post-application sampling was carried out one month later from the event. Concentrations of GLY + AMPA in surface soils (0-5 cm depth) during pre-application period showed values 20-fold higher (0.093-0.163 μg/g d.w.) than control area (0.005 μg/g d.w.). After application event soils showed markedly higher pesticide concentrations. A predominance of AMPA (80%) was observed in S1 (early application), while 34% in S2 for surface soils. GLY + AMPA concentrations decreased with depth and correlated strongly with organic carbon (r between 0.74 and 0.88, p < 0.05) and pH (r between - 0.81 and - 0.76, p < 0.001). The slight enrichment of pesticides observed from 25 cm depth to deeper layer, in addition to the alkaline pH along the profile, is of high concern about groundwater contamination. Sediments from pre-application period showed relatively lower pesticide levels (0.0053-0.0263 μg/g d.w.) than surface soil with a predominance of glyphosate, indicating a limited degradation. Levels of contaminants (mainly AMPA) in streamwater (ND-0.5 ng/mL) denote the low persistence of these compounds. However, a direct relationship in AMPA concentration was observed between sediment and streamwater. Despite the known relatively short half-life of glyphosate in soils, GLY + AMPA occurrence is registered in almost all matrices at different sampling times (pre- and post-application events). The physicochemical characteristics (organic carbon, texture, pH) and structure of soils and sediment in addition to the time elapsed from application determined the behavior of these contaminants in the environment. As a whole, the results warn us about vertical transport trough soil profile with the possibility of reaching groundwater. © 2015 Elsevier B.V.  |l eng 
593 |a Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de, Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y, Naturales, Univ. Nacional de Mar del Plata Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), D. Funes 3350, Mar del Plata, Argentina 
593 |a Instituto Nacional de Tecnología Agropecuaria INTA EEA Balcarce, Ruta Nacional 226, Km 73, 5, Balcarce, Buenos Aires, Argentina 
593 |a CIMA-Facultad de Ciencias Exactas-UNLP, Argentina 
593 |a Instituto de Ciencia y Tecnología de Alimentos Córdoba, Argentina 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
690 1 0 |a AGRICULTURAL WATERSHED 
690 1 0 |a AMPA 
690 1 0 |a GLYPHOSATE 
690 1 0 |a SOIL PROFILE 
690 1 0 |a AGRICULTURE 
690 1 0 |a ALKALINITY 
690 1 0 |a GROUNDWATER 
690 1 0 |a GROUNDWATER POLLUTION 
690 1 0 |a HERBICIDES 
690 1 0 |a ORGANIC CARBON 
690 1 0 |a PESTICIDES 
690 1 0 |a SEDIMENTS 
690 1 0 |a WATERSHEDS 
690 1 0 |a AGRICULTURAL WATERSHEDS 
690 1 0 |a AMPA 
690 1 0 |a GLYPHOSATES 
690 1 0 |a GROUNDWATER CONTAMINATION 
690 1 0 |a LIMITED DEGRADATIONS 
690 1 0 |a PESTICIDE CONCENTRATIONS 
690 1 0 |a PHYSICOCHEMICAL CHARACTERISTICS 
690 1 0 |a SOIL PROFILES 
690 1 0 |a SOILS 
690 1 0 |a 2 AMINOETHYLPHOSPHONIC ACID 
690 1 0 |a GLYPHOSATE 
690 1 0 |a ORGANIC CARBON 
690 1 0 |a ALPHA AMINO 3 HYDROXY 5 METHYL 4 ISOXAZOLEPROPIONIC ACID 
690 1 0 |a GLYCINE 
690 1 0 |a GLYPHOSATE 
690 1 0 |a HERBICIDE 
690 1 0 |a PESTICIDE RESIDUE 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a AGRICULTURAL LAND 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a GLYPHOSATE 
690 1 0 |a GROUNDWATER POLLUTION 
690 1 0 |a PESTICIDE APPLICATION 
690 1 0 |a POLLUTANT TRANSPORT 
690 1 0 |a SANDY SOIL 
690 1 0 |a SEDIMENT 
690 1 0 |a SOIL PROFILE 
690 1 0 |a STREAMWATER 
690 1 0 |a WATERSHED 
690 1 0 |a AGRICULTURAL LAND 
690 1 0 |a ALKALINITY 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a PESTICIDE SPRAYING 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a POLLUTION TRANSPORT 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SANDY SOIL 
690 1 0 |a SEDIMENT 
690 1 0 |a SOIL ACIDITY 
690 1 0 |a SOIL STRUCTURE 
690 1 0 |a SOIL TEXTURE 
690 1 0 |a SOYBEAN 
690 1 0 |a SURFACE SOIL 
690 1 0 |a WATER POLLUTION 
690 1 0 |a WATERSHED 
690 1 0 |a AGRICULTURE 
690 1 0 |a ANALOGS AND DERIVATIVES 
690 1 0 |a ANALYSIS 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a HALF LIFE TIME 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a GLYCINE MAX 
690 1 0 |a AGRICULTURE 
690 1 0 |a ALPHA-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a GLYCINE 
690 1 0 |a HALF-LIFE 
690 1 0 |a HERBICIDES 
690 1 0 |a PESTICIDE RESIDUES 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
700 1 |a Miglioranza, K.S.B. 
700 1 |a Aparicio, Virginia Carolina 
700 1 |a Marino, D. 
700 1 |a Bedmar, F. 
700 1 |a Wunderlin, D.A. 
773 0 |d Elsevier, 2015  |g v. 536  |h pp. 687-694  |x 00489697  |w (AR-BaUEN)CENRE-6777  |t Sci. Total Environ. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940062539&doi=10.1016%2fj.scitotenv.2015.07.090&partnerID=40&md5=add727c752e3bcb6cec69094dd6bf2ab  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.scitotenv.2015.07.090  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00489697_v536_n_p687_Lupi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00489697_v536_n_p687_Lupi  |y Registro en la Biblioteca Digital 
961 |a paper_00489697_v536_n_p687_Lupi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74076