Enhanced photocatalytic properties of core@shell SiO<inf>2</inf>@TiO<inf>2</inf> nanoparticles

SiO<inf>2</inf>@TiO<inf>2</inf> core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO<inf>2</inf>. Thus, development of facile, repro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ullah, S.
Otros Autores: Ferreira-Neto, E.P, Pasa, A.A, Alcântara, C.C.J, Acuña, J.J.S, Bilmes, S.A, Martínez Ricci, M.L, Landers, R., Fermino, T.Z, Rodrigues-Filho, U.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20656caa a22017177a 4500
001 PAPER-13115
003 AR-BaUEN
005 20230518204323.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84930194885 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ACBEE 
100 1 |a Ullah, S. 
245 1 0 |a Enhanced photocatalytic properties of core@shell SiO<inf>2</inf>@TiO<inf>2</inf> nanoparticles 
260 |b Elsevier  |c 2015 
270 1 0 |m Rodrigues-Filho, U.P.; Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, Brazil 
506 |2 openaire  |e Política editorial 
504 |a Linsebigler, A.L., Lu, G., Yates, J.T., Yates, J.T., Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results (1995) Chem. Rev., 95, pp. 5-758 
504 |a Fujishima, A., Zhang, X., Tryk, D., TiO<inf>2</inf> photocatalysis and related surface phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582 
504 |a Pakdel, E., Daoud, W., Self-cleaning cotton functionalized with TiO<inf>2</inf>/SiO<inf>2</inf>: focus on the role of silica (2013) J. Colloid Interface Sci., 401, pp. 1-7 
504 |a Son, S., Hwang, S.H., Kim, C., Yun, J.Y., Jang, J., Designed synthesis of SiO<inf>2</inf>/TiO<inf>2</inf> core/shell structure as light scattering material for highly efficient dye-sensitized solar cells (2013) ACS Appl. Mater. Interfaces, 5, pp. 4815-4820 
504 |a Li, Y., Leung, P., Yao, L., Song, Q.W., Newton, E., Antimicrobial effect of surgical masks coated with nanoparticles (2006) J. Hosp. Infect., 62, pp. 58-63 
504 |a Sheel, D.W., Evans, P., Photoactive and antibacterial TiO<inf>2</inf> thin films on stainless steel (2007) Surf. Coatings Technol., 201, pp. 9319-9324 
504 |a Saravanan, K., Ananthanarayanan, K., Balaya, P., Mesoporous TiO<inf>2</inf> with high packing density for superior lithium storage (2010) Energy Environ. Sci., 3 
504 |a Banerjee, S., Gopal, J., Muraleedharan, P., Tyagi, A., Raj, B., Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy (2006) Curr. Sci., 90, pp. 1378-1383 
504 |a Augustynski, J., The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO<inf>2</inf> (1993) Electrochim. Acta, 38, pp. 43-46 
504 |a Mandzy, N., Grulke, E., Druffel, T., Breakage of TiO<inf>2</inf> agglomerates in electrostatically stabilized aqueous dispersions (2005) Powder Technol., 160, pp. 121-126 
504 |a Hanaor, D.A.H., Assadi, M.H.N., Li, S., Yu, A.B., Sorrell, C.C., Ab initio study of phase stability in doped TiO<inf>2</inf> (2012) Comput. Mech., 50, pp. 185-194 
504 |a Raj, K., Viswanathan, B., Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile (2009) Indian J. Chem., 48, pp. 1378-1382 
504 |a Satterfield, C.N., (1991) Heterogeneous Catalysis Industrial Practice, , McGraw-Hill, New York 
504 |a Herrmann, J., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants (1999) Catal. Today, 53, pp. 115-129 
504 |a Hanprasopwattana, A., Srinivasan, S., Sault, A.G., Datye, A.K., Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM) (1996) Langmuir, 12, pp. 3173-3179 
504 |a Hanprasopwattana, A., Rieker, T., Sault, A., Datye, A., Morphology of titania coatings on silica gel (1997) Catal. Lett., 45, pp. 165-175 
504 |a Li, A., Jin, Y., Muggli, D., Pierce, D.T., Aranwela, H., Marasinghe, G.K., Nanoscale effects of silica particle supports on the formation and properties of TiO<inf>2</inf> nanocatalysts (2013) Nanoscale, 5, pp. 5854-5862 
504 |a Ohno, T., Numakura, K., Itoh, H., Suzuki, H., Matsuda, T., Control of the quantum size effect of TiO<inf>2</inf>-SiO<inf>2</inf> hybrid particles (2009) Mater. Lett., 63, pp. 1737-1739 
504 |a Joo, J.B., Lee, I., Dahl, M., Moon, G.D., Zaera, F., Yin, Y., Controllable synthesis of mesoporous TiO<inf>2</inf> hollow shells: toward an efficient photocatalyst (2013) Adv. Funct. Mater., 23, pp. 4246-4254 
504 |a Joo, J.B., Zhang, Q., Lee, I., Dahl, M., Zaera, F., Yin, Y., Mesoporous anatase titania hollow nanostructures though silica-protected calcination (2012) Adv. Funct. Mater., 22, pp. 166-174 
504 |a Wei, S., Wang, Q., Zhu, J., Sun, L., Lin, H., Guo, Z., Multifunctional composite core-shell nanoparticles (2011) Nanoscale, 3, p. 4474 
504 |a Zhang, Q., Lee, I., Joo, J.I.B., Zaera, F., Core-shell nanostructured catalysts (2013) Acc. Chem. Res., 46, pp. 1816-1824 
504 |a Li, W., Zhao, D., Extension of the stöber method to construct mesoporous SiO<inf>2</inf> and TiO<inf>2</inf> shells for uniform multifunctional core-shell structures (2013) Adv. Mater., 25, pp. 142-149 
504 |a Jankiewicz, B.J., Jamiola, D., Choma, J., Jaroniec, M., Silica-metal core-shell nanostructures (2012) Adv. Colloid Interface Sci., 170, pp. 28-47 
504 |a Iler, R.K., (1978) The Chemistry Of Silica, , Wiley-Interscience, New York 
504 |a Fink, A., Stöber, W., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range (1968) J. Colloid Interface Sci., 26, pp. 62-69 
504 |a Joo, J.B., Zhang, Q., Dahl, M., Zaera, F., Yin, Y., Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells (2012) J. Mater. Res., 28, pp. 2-368 
504 |a Periyat, P., Baiju, K.V., Mukundan, P., Pillai, P.K., Warrier, K.G.K., High temperature stable mesoporous anatase TiO<inf>2</inf> photocatalyst achieved by silica addition (2008) Appl. Catal. A Gen., 349, pp. 13-19 
504 |a Rasalingam, S., Peng, R., Koodali, R.T., Removal of hazardous pollutants from wastewaters: applications of TiO<inf>2</inf>-SiO<inf>2</inf> mixed oxide materials (2014) J. Nanomater., 42 
504 |a Anderson, C., Bard, A.J., An improved photocatalyst of TiO<inf>2</inf>/SiO<inf>2</inf> prepared by a Sol-gel synthesis (1995) J. Phys. Chem., 99, pp. 9882-9885 
504 |a Carp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide (2004) Prog. Solid State Chem., 32, pp. 33-177 
504 |a West, A.R., (1984) Solid State Chemistry and its Applications, , Wiley, Chichester [West Sussex] New York 
504 |a Gross, T., Ramm, M., Sonntag, H., Unger, W., Weijers, H.M., Adem, E.H., An XPS analysis of different SiO<inf>2</inf> modifications employing a C 1s as well as an Au 4f7/2 static charge reference (1992) Surf. Interface Anal., 18, pp. 59-64 
504 |a Parks, G.A., The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems (1965) Chem. Rev., 65, pp. 177-198 
504 |a Ruiz, P., Delmon, B., Koch, B., Castillo, R., Influence of preparation methods on the texture and structure of titania supported on silica (1994) J. Mater. Chem., 4, pp. 903-906 
504 |a Gil-Llambias, F.J., Escudey-Castro, A.M., Use of zero point charge measurements in determining the apparent surface coverage of molybdena in MoO<inf>3</inf>/(-Al<inf>2</inf>O<inf>3</inf> catalysts (1982) J. Chem. Soc. Chem. Commun., 47, pp. 8-479 
504 |a Ullah, S., Acuña, J.J.S., Pasa, A.A., Bilmes, S.A., Vela, M.E., Benitez, G., Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid (2013) Appl. Surf. Sci., 277, pp. 111-120 
504 |a Ewing, G., (2005) Analytical Instrumentation Handbook, , Marcel Dekker, New York 
504 |a Livage, J., Henry, M., Sanchez, C., Sol-gel chemistry of transition metal oxides (1988) Prog. Solid State Chem., 18, pp. 259-341 
504 |a Egerton, R.F., (2005) Physical Principles of Electron Microscopy, , Springer, US, Boston, MA 
504 |a Djerdj, I., Tonejc, A.M., Structural investigations of nanocrystalline TiO<inf>2</inf> samples (2006) J. Alloys Compd., 413, pp. 159-174 
504 |a Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B., Surface area and pore texture of catalysts (1998) Catal. Today, 41, pp. 207-219 
504 |a Regazzoni, A., Mandelbaum, P., Matsuyoshi, M., Schiller, S., Bilmes, S.A., Blesa, M., Adsorption and photooxidation of salicylic acid on titanium dioxide: a surface complexation description (1998) Langmuir, 14, p. 868 
504 |a Minero, C., Catozzo, F., Pelizzetti, E., Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions (1992) Langmuir, 8, pp. 481-486 
504 |a Friesen, D.A., Morello, L., Headley, J.V., Langford, C.H., Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO<inf>2</inf> colloidal photocatalysts (2000) J. Photochem. Photobiol. A Chem., 133, pp. 213-220 
504 |a Xu, Y., Langford, C., UV-or visible-light-induced degradation of X3B on TiO<inf>2</inf> nanoparticles: the influence of adsorption (2001) Langmuir, 17, pp. 897-902 
504 |a Gao, X., Wachs, I.E., Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties (1999) Catal. Today, 51, pp. 233-254 
504 |a Murashkevich, A.N., Lavitskaya, A.S., Barannikova, T.I., Zharskii, I.M., Infrared absorption spectra and structure of TiO<inf>2</inf>-SiO<inf>2</inf> composites (2008) J. Appl. Spectrosc., 75, pp. 730-734 
504 |a Antcliff, K.L., Murphy, D.M., Griffiths, E., Giamello, E., The interaction of H<inf>2</inf>O<inf>2</inf> with exchanged titanium oxide systems (TS-1, TiO<inf>2</inf>, [Ti]-APO-5, Ti-ZSM-5), Phys (2003) Chem. Chem. Phys., 5, pp. 4306-4316 
504 |a Bohren, C.F., Huffman, D.R., (1998) Absorption and Scattering of Light by Small Particles, , Wiley-VCH Verlag GmbH, Weinheim, Germany 
504 |a Tompkins, H., McGahan, W., (1999) Spectroscopic Ellipsometry and Reflectometry: a User's Guide, , Wiley-Interscience, New York 
504 |a Djurisic, A.B., Li, E.H., Modeling the index of refraction of insulating solids with a modified lorentz oscillator model (1998) Appl. Opt., 37, pp. 5291-5297 
504 |a Brus, L.E., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites (1983) J. Chem. Phys., 79 
504 |a Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., Photocatalytic hydrogenation of CH<inf>3</inf>CCH with H<inf>2</inf>O on samll-particle TiO<inf>2</inf>: size quantization and reaction intermediates (1987) J. Phys. Chem., 91, pp. 4305-4310 
504 |a Lin, H., Huang, C., Li, W., Ni, C., Shah, S., Tseng, Y., Size dependency of nanocrystalline TiO<inf>2</inf> on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol (2006) Appl. Catal. B Environ., 68, pp. 1-11 
504 |a Shen, Z.-Y., Li, L.-Y., Li, Y., Wang, C.-C., Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO<inf>2</inf>/TiO<inf>2</inf> core/shell microspheres as high performance photocatalyst for dye degradation (2011) J. Colloid Interface Sci., 354, pp. 196-201 
504 |a Li, X., Wu, X., He, G., Sun, J., Xiao, W., Tan, Y., Microspheroidization treatment of macroporous TiO<inf>2</inf> to enhance its recycling and prevent membrane fouling of photocatalysis - membrane system (2014) Chem. Eng. J., 251, pp. 58-68 
504 |a Pagel, D., Aggergation and deaggregation in TiO<inf>2</inf> (need be corrected) (2007) J. Phys. Chem. C, 111, pp. 4458-4464 
504 |a Hirano, M., Ota, K., Iwata, H., Formation of anatase (TiO<inf>2</inf>)/Silica (SiO<inf>2</inf>) composite nanoparticles with high phase stability of 1300°C from acidic solution by hydrolysis under hydrothermal condition (2004) Chem. Mater., 16, pp. 3725-3732 
504 |a Wang, Y., Chen, E., Lai, H., Lu, B., Hu, Z., Qin, X., Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO<inf>2</inf>/TiO<inf>2</inf> core/shell particles in photoanode (2013) Ceram. Int., 39, pp. 5407-5413 
520 3 |a SiO<inf>2</inf>@TiO<inf>2</inf> core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO<inf>2</inf>. Thus, development of facile, reproducible and effective methods for the synthesis of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO<inf>2</inf> shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO<inf>2</inf>@TiO<inf>2</inf>), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO<inf>2</inf>@TiO<inf>2</inf> configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO<inf>2</inf>@TiO<inf>2</inf> CSNs was demonstrated compared to unsupported TiO<inf>2</inf>. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO<inf>2</inf>@TiO<inf>2</inf> particles. All these aspects are directly influenced by the core@shell configuration of SiO<inf>2</inf>@TiO<inf>2</inf> samples. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo, 308,653/2010-6 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCYT-PICT-2010-0985/PICT2012-1167 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo, 2013/24948-3 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: TWAS 
536 |a Detalles de la financiación: The Academy of Sciences for the Developing World, TWAS 
536 |a Detalles de la financiación: The research was developed under the research grants # 2011/08120-0 and # 2013/24948-3 from São Paulo Research Foundation (FAPESP) and grant 308,653/2010-6 from the National Council for Scientific and Technological Development (CNPq). A. Bilmes and M.L. Martínez Ricci acknowledge financial support from Agencia Nacional de Promoción Científica y Tecnológica, ANPCYT-PICT-2010-0985/PICT2012-1167. We also acknowledge financial support from nBioNet Nanobiotechnology Network funded by Coordination of Improvement of Higher Education Personnel (CAPES, Brazil)). 
536 |a Detalles de la financiación: Sajjad Ullah thanks The World Academy of Science (TWAS, Italy) and National Council for Scientific and Technological development (CNPq, Brazil) for PhD fellowship. Elias P. Ferreira-Neto thanks FAPESP for PhD fellowship (grant # 2013/24948-3). The authors wish to thank the Heterogeneous Catalysis and Electrochemistry Group at the Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP) for assistance in surface area measurements, Prof. Miguel Jafelicci Júnior and Wesley Renato Viali for assistance in the zeta potential measurements, Prof. Douglas Wagner Franco and Thiago Abrahão Silva for help in EPR measurements. Appendix A 
593 |a Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, São Carlos, São Paulo, 13564-970, Brazil 
593 |a Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120 KP, Pakistan 
593 |a Laboratório de Filmes Finos e Superfícies, Departamento da Física, Universidade Federal de Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil 
593 |a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Paulo, Brazil 
593 |a Instituto de Química Física de los Materiales Medio Ambiente y Energía, INQUIMAE, DQIAQF, Facultad Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Pabellón 2, C1428EHA, Argentina 
593 |a Instituto de Física Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil 
690 1 0 |a CORE@SHELL 
690 1 0 |a OPTICAL PROPERTIES 
690 1 0 |a PHOTOCATALYSIS 
690 1 0 |a QUANTUM SIZE EFFECT 
690 1 0 |a RAYLEIGH SCATTERING 
690 1 0 |a SIO<INF>2</INF>@TIO<INF>2</INF> 
690 1 0 |a ELECTRON MICROSCOPY 
690 1 0 |a ELECTRON RESONANCE 
690 1 0 |a ELECTRONS 
690 1 0 |a ENERGY DISPERSIVE SPECTROSCOPY 
690 1 0 |a MAGNETIC RESONANCE 
690 1 0 |a NANOPARTICLES 
690 1 0 |a OPTICAL PROPERTIES 
690 1 0 |a PARAMAGNETIC RESONANCE 
690 1 0 |a PARAMAGNETISM 
690 1 0 |a PHOTOCATALYSIS 
690 1 0 |a PHOTOCATALYSTS 
690 1 0 |a RAYLEIGH SCATTERING 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a TITANIUM DIOXIDE 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a X RAY SCATTERING 
690 1 0 |a ADSORPTION OF ORGANIC MOLECULES 
690 1 0 |a BET SURFACE AREA MEASUREMENT 
690 1 0 |a CORE SHELL 
690 1 0 |a CORE-SHELL NANOPARTICLES 
690 1 0 |a PHOTOCATALYTIC ACTIVITIES 
690 1 0 |a QUANTUM SIZE EFFECTS 
690 1 0 |a TIO 
690 1 0 |a ZETA POTENTIAL MEASUREMENTS 
690 1 0 |a SHELLS (STRUCTURES) 
700 1 |a Ferreira-Neto, E.P. 
700 1 |a Pasa, A.A. 
700 1 |a Alcântara, C.C.J. 
700 1 |a Acuña, J.J.S. 
700 1 |a Bilmes, S.A. 
700 1 |a Martínez Ricci, M.L. 
700 1 |a Landers, R. 
700 1 |a Fermino, T.Z. 
700 1 |a Rodrigues-Filho, U.P. 
773 0 |d Elsevier, 2015  |g v. 179  |h pp. 333-343  |p Appl. Catal. B Environ.  |x 09263373  |w (AR-BaUEN)CENRE-3757  |t Applied Catalysis B: Environmental 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930194885&doi=10.1016%2fj.apcatb.2015.05.036&partnerID=40&md5=a75d47a121a97628ada17894abd8a549  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.apcatb.2015.05.036  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09263373_v179_n_p333_Ullah  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09263373_v179_n_p333_Ullah  |y Registro en la Biblioteca Digital 
961 |a paper_09263373_v179_n_p333_Ullah  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74068