Evidence of selection on phenotypic plasticity and cost of plasticity in response to host-feeding sources in the major Chagas disease vector Triatoma infestans

Phenotypic plasticity is the ability of a genotype to display alternative phenotypes in different environments. Understanding how plasticity evolves and the factors that favor and constrain its evolution have attracted great interest. We investigated whether selection on phenotypic plasticity and co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nattero, J.
Otros Autores: Leonhard, G., Gürtler, Ricardo Esteban, Crocco, L.B
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15318caa a22016457a 4500
001 PAPER-13091
003 AR-BaUEN
005 20250211094340.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84943781906 
030 |a ACTRA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Nattero, J. 
245 1 0 |a Evidence of selection on phenotypic plasticity and cost of plasticity in response to host-feeding sources in the major Chagas disease vector Triatoma infestans 
260 |b Elsevier  |c 2015 
270 1 0 |m Nattero, J.; Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Argentina 
504 |a Aldana, E., Jácome, D., Lizano, E., Efecto de la alternación de fuentes sanguíneas sobre la fecundidad y la fertilidad de Rhodnius prolixus Stål (Heteroptera: Reduviidae) (2009) EntomoBrasilis, 2, pp. 17-23 
504 |a Baythavong, B.S., Stanton, M.L., Characterizing selection on phenotypic plasticity in response to natural environmental heterogeneity (2010) Evolution, 64, pp. 2904-2920 
504 |a Bookstein, F.L., (1991) Morphometric Tools for Landmark Data, , Cambridge University Press, Cambridge 
504 |a Caruso, C.M., Maherali, H., Sherrard, M., Plasticity of physiology in Lobelia: testing for adaptation and constraint (2006) Evolution, 60, pp. 980-990 
504 |a Debat, V., Begin, M., Legout, H., David, J.R., Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature (2003) Evolution, 57, pp. 2773-2784 
504 |a Dudley, S.A., Schmitt, J., Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis (1996) Am. Nat., 147, pp. 445-465 
504 |a Guarneri, A.A., Diotaiuti, L., Gontijo, N.F., Gontijo, A.F., Pereira, M.H., Comparison of feeding behaviour of Triatoma infestans, Triatoma brasiliensis and Triatoma pseudomaculata in different hosts by electronic monitoring of the cibarial pump (2000) J. Ins. Physiol., 46, pp. 1121-1127 
504 |a Guarneri, A.A., Pereira, M.H., Diotaiuti, L., Influence of the blood meal source on the development of Triatoma infestans, Triatoma brasiliensis, Triatoma sordida and Triatoma pseudomaculata (Heteroptera: Reduviidae) (2000) J. Med. Entomol., 37, pp. 373-379 
504 |a Gurevitz, J.M., Ceballos, L.A., Kitron, U., Gürtler, R.E., Flight initiation of Triatoma infestans (Hemiptera: Reduviidae) under natural climatic conditions (2006) J. Med. Entomol., 43, pp. 143-150 
504 |a Gürtler, R.E., Kitron, U., Cecere, M.C., Segura, E.L., Cohen, J.E., Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 16194-16199 
504 |a Gürtler, R.E., Cecere, M.C., Fernández, M.P., Vázquez-Prokopec, G.M., Ceballos, L.A., Gurevitz, J.M., Kitron, U., Cohen, J.E., Key source habitats and potential dispersal of Triatoma infestans populations in northwestern Argentina: implications for vector control (2014) PLoS Negl. Trop. Dis., 8, p. e3238 
504 |a Jorge, L.R., Cordeiro-Estrela, P., Klaczko, L.B., Moreira, G.R.P., Freitas, A.V.L., Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato (2011) Biol. J. Linn. Soc., 102, pp. 765-774 
504 |a Klingenberg, C.P., Monteiro, L.R., Distances and directions in multidimensional shape spaces: implications for morphometric applications (2005) Syst. Biol., 54, pp. 678-688 
504 |a Krebs, R.A., Feder, M.E., Natural variation in the expression of the heat-shock protein Hsp70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress (1997) Evolution, 51, pp. 173-179 
504 |a Lande, R., Arnold, S.J., The measurement of selection on correlated characters (1983) Evolution, 37, pp. 1210-1226 
504 |a Laparie, M., Lebouvier, M., Lalouette, L., Renault, D., Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island (2010) Biol. Invasion, 12, pp. 3405-3417 
504 |a Leal-Aguilar, K., Ruiz-Montoya, L., Perales, H., Morales, H., Phenotypic plasticity of Brevicoryne brassicae in responses to nutritional quality of two related host plants (2008) Ecol. Entomol., 33, pp. 735-741 
504 |a Lehane, M.J., (2005) The Biology of Blood-Sucking Insects, , Cambridge University Press, London 
504 |a Lewis, J.H., (1996) Comparative Haemostasis in Vertebrates, , Plenum Press, New York 
504 |a Mooney, K.A., Agrawal, A.A., Phenotypic plasticity in plant-herbivore interactions (2008) Evolutionary Biology of Plant and Insect Relationships, pp. 43-59. , University of California Press, Berkeley, K. Tillmon (Ed.) 
504 |a Mozaffarian, F., Sarafrazi, A., Nouri Ganbalani, G., Host plant-associated population variation in the carob moth Ectomyelois ceratoniae in Iran: a geometric morphometric analysis suggests a nutritional basis (2007) J. Insect Sci., 7 
504 |a Mrdaković, M., Stojković, B., Perić-Mataruga, V., Ilijin, L., Vlahović, M., Lazarević, J., Adaptive phenotypic plasticity of gypsy moth digestive enzymes (2014) Cent. Eur. J. Biol., 9 (3), pp. 9-319 
504 |a Nattero, J., Rodríguez, C., Crocco, L., Influence of the quality and quantity of blood ingested on reproductive parameters and life-span in Triatoma infestans (Klug) (2011) Acta Trop., 97, pp. 183-187 
504 |a Nattero, J., Malerba, R., Rodríguez, C., Crocco, L., Phenotypic plasticity in response to food source in Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae: Triatominae) (2013) Infect. Gen. Evol., 19 (39) 
504 |a Peppe, F.B., Lomônaco, C., Phenotypic plasticity of Myzus persicae (Hemíptera: Aphididae) raised on Brassica oleracea L. var. acephala (kale) and Raphanus sativusRaphanus sativus L. (radish) (2003) Gen. Mol. Biol., 26, pp. 189-194 
504 |a Pigliucci, M., (2001) Phenotypic Plasticity: Beyond Nature and Nurture, , Johns Hopkins University Press, Baltimore 
504 |a Pigliucci, M., Evolution of phenotypic plasticity: where are we going now? (2005) Trends Ecol. Evol., 20, pp. 481-486 
504 |a Rabinovich, J.E., Kitron, U.D., Obed, Y., Yoshioka, M., Gottdenker, N., Chaves, L.F., Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae) (2011) Mem. Inst. Oswaldo Cruz, 106, pp. 479-494 
504 |a Relyea, R.A., Costs of phenotypic plasticity (2002) Am. Nat., 159, pp. 272-282 
504 |a Sakaluk, S.K., Muller, J.K., Risk of sperm competition mediates copulation duration, but not paternity, of male burying beetles (2008) J. Insect Behav., 21, pp. 153-163 
504 |a Schachter-Broide, J., Dujardin, J.P., Kitron, U., Gürtler, R.E., Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from Northwestern Argentina using wing geometric morphometry (2004) J. Med. Entomol., 41, pp. 643-649 
504 |a Schäfer, M.A., Berger, D., Jochmann, R., Blanckenhorn, W.U., Bussière, L.F., The developmental plasticity and functional significance of an additional sperm storage compartment in female yellow dung flies (2013) Funct. Ecol., 27, pp. 1392-1402 
504 |a Scheiner, S.M., Berrigan, D., The genetics of phenotypic plasticity. VIII. The cost of plasticity in Daphnia pulex (1998) Evolution, 52, pp. 368-378 
504 |a Soto, I.M., Carreira, V.P., Soto, E.M., Hasson, E., Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila (2009) J. Evol. Biol., 21, pp. 598-609 
504 |a Stinchcombe, J.R., Dorn, L.A., Schmitt, J., Flowering time plasticity in Arabidopsis thaliana: a reanalysis of Westerman and Lawrence (2004) J. Evol. Biol., 17, pp. 197-207 
504 |a Stoka, A.M., Salomon, O.D., Noriega, F.G., Physiology of Triatominae's reproduction (1987) Chagas' Disease Vectors, 2, pp. 109-129. , CRC Press, Florida 
504 |a van Kleunen, M., Fischer, M., Constraints on the evolution of adaptive phenotypic plasticity in plants (2005) New Phytol., 166, pp. 49-60 
504 |a Vázquez-Prokopec, G.M., Ceballos, L.A., Cecere, M.C., Gürtler, R.E., Seasonal variations of microclimatic conditions in domestic and peridomestic habitats of Triatoma infestans in rural northwest Argentina (2002) Acta Trop., 84, pp. 229-238 
504 |a Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S.M., Schlichting, C.D., Van Tienderen, P.H., Adaptive phenotypic plasticity: consensus and controversy (1995) Trends Ecol. Evol., 10, pp. 212-217 
504 |a West-Eberhard, M.J., (2003) Developmental Plasticity and Evolution, , Oxford University Press, New York 
504 |a Wolf, J.B., Wade, M.J., What are maternal effects (and what are they not)? (2009) Philos. Trans. R. Soc., 364, pp. 1107-1115 
504 |a Zeledón, R., Rabinovich, J.E., Chagas disease: an ecological appraisal with special emphasis on its insect vectors (1981) Ann. Rev. Entomol., 26, pp. 101-133 
506 |2 openaire  |e Política editorial 
520 3 |a Phenotypic plasticity is the ability of a genotype to display alternative phenotypes in different environments. Understanding how plasticity evolves and the factors that favor and constrain its evolution have attracted great interest. We investigated whether selection on phenotypic plasticity and costs of plasticity affect head and wing morphology in response to host-feeding sources in the major Chagas disease vector Triatoma infestans. Full-sib families were assigned to blood-feeding on either live pigeons or guinea pigs throughout their lives. We measured diet-induced phenotypic plasticity on wing and head size and shape; characterized selection on phenotypic plasticity for female and male fecundity rates, and evaluated costs of plasticity. Wing size and shape variables exhibited significant differences in phenotypic plasticity associated with host-feeding source in female and male bugs. Evidence of selection on phenotypic plasticity was detected in head size and shape for guinea pig-fed females. A lower female fecundity rate was detected in more plastic families for traits that showed selection on plasticity. These results provide insights into the morphological phenotypic plasticity of T. infestans, documenting fitness advantages of head size and shape for females fed on guinea pigs. This vector species showed measurable benefits of responding plastically to environmental variation rather than adopting a fixed development plan. The presence of cost of plasticity suggests constraints on the evolution of plasticity. Our study indicates that females fed on guinea pigs (and perhaps on other suitable mammalian hosts) have greater chances of evolving under selection on phenotypic plasticity subject to some constraints. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto, 05/1554 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICTO-Glaxo 
536 |a Detalles de la financiación: We are grateful to G. Muscicant and C. Cano (Servicio Provincial de Chagas San Luis) for logistic support in fieldwork. JN and REG are CONICET researchers. R. Piccinali made useful suggestions on the final version of this manuscript. This study was funded by Secretaría de Ciencia y Técnica Universidad Nacional de Córdoba (05/1554). REG acknowledges with thanks the support of Agencia Nacional de Promoción de Ciencia y Tecnológica (grants PICTO-Glaxo and PICT), CONICET (PIP) and the University of Buenos Aires . 
593 |a Cátedra de Introducción a la Biologia, Fac. de Ciencias Exactas Fisicas y Naturales, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET, Universidad Nacional de Córdoba, Buenos Aires, Argentina 
593 |a Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Laboratorio de Hormigas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina 
690 1 0 |a COST OF PLASTICITY 
690 1 0 |a MORPHOMETRIC TRAITS 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a SELECTION 
690 1 0 |a TRIATOMA INFESTANS 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DISEASE VECTOR 
690 1 0 |a GENOTYPE 
690 1 0 |a HOST 
690 1 0 |a INSECT 
690 1 0 |a MORPHOMETRY 
690 1 0 |a PHENOTYPE 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a RODENT 
690 1 0 |a SELECTION 
690 1 0 |a ADULT 
690 1 0 |a ANATOMICAL VARIATION 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a COST OF PHENOTYPIC PLASTICITY 
690 1 0 |a EVOLUTION 
690 1 0 |a FEMALE 
690 1 0 |a FEMALE FERTILITY 
690 1 0 |a GUINEA PIG 
690 1 0 |a MALE 
690 1 0 |a MALE FERTILITY 
690 1 0 |a MORPHOMETRICS 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a PIGEON 
690 1 0 |a TRIATOMA INFESTANS 
690 1 0 |a ANATOMY AND HISTOLOGY 
690 1 0 |a ANIMAL 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DIET 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a PHENOTYPE 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PIGEONS AND DOVES 
690 1 0 |a TRANSMISSION 
690 1 0 |a TRIATOMA 
690 1 0 |a WING 
690 1 0 |a CAVIA 
690 1 0 |a COLUMBA 
690 1 0 |a MAMMALIA 
690 1 0 |a TRIATOMA INFESTANS 
690 1 0 |a ANIMALS 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a COLUMBIDAE 
690 1 0 |a DIET 
690 1 0 |a DISEASE VECTORS 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a FEMALE 
690 1 0 |a GUINEA PIGS 
690 1 0 |a MALE 
690 1 0 |a PHENOTYPE 
690 1 0 |a TRIATOMA 
690 1 0 |a WINGS, ANIMAL 
700 1 |a Leonhard, G. 
700 1 |a Gürtler, Ricardo Esteban 
700 1 |a Crocco, L.B. 
773 0 |d Elsevier, 2015  |g v. 152  |h pp. 237-244  |p Acta Trop.  |x 0001706X  |w (AR-BaUEN)CENRE-3547  |t Acta Tropica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84943781906&doi=10.1016%2fj.actatropica.2015.09.022&partnerID=40&md5=f5cf1733135b6b35843e31e2424c6689  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.actatropica.2015.09.022  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0001706X_v152_n_p237_Nattero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0001706X_v152_n_p237_Nattero  |y Registro en la Biblioteca Digital 
961 |a paper_0001706X_v152_n_p237_Nattero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74044