Activation of the p53 tumor suppressor and its multiple roles in cell cycle and apoptosis

p53 is a widely conserved tumor suppressor protein that is frequently inactivated in human cancer. p53 functions primarily as a transcription factor regulating the expression of a growing repertoire of target genes. p53 integrates signals from many stress-activated pathways and is subject to multipl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giono, L.E
Otros Autores: Manfredi, J.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Berlin Heidelberg 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19565caa a22013937a 4500
001 PAPER-12931
003 AR-BaUEN
005 20230518204309.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84900600620 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Giono, L.E. 
245 1 0 |a Activation of the p53 tumor suppressor and its multiple roles in cell cycle and apoptosis 
260 |b Springer Berlin Heidelberg  |c 2010 
270 1 0 |m Manfredi, J.J.; Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, United States; email: james.manfredi@mssm.edu 
506 |2 openaire  |e Política editorial 
504 |a Anderson, M.E., Woelker, B., Reed, M., Wang, P., Tegtmeyer, P., Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: Implications for regulation (1997) Mol Cell Biol, 17 (11), pp. 6255-6264 
504 |a Ando, T., Kawabe, T., Ohara, H., Ducommun, B., Itoh, M., Okamoto, T., Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage (2001) J Biol Chem, 276 (46), pp. 42971-42977 
504 |a Appella, E., Anderson, C.W., Post-translational modifications and activation of p53 by genotoxic stresses (2001) Eur J Biochem, 268 (10), pp. 2764-2772 
504 |a Asher, G., Shaul, Y., P53 Proteasomal degradation: Poly-ubiquitination is not the whole story (2005) Cell Cycle, 4 (8), pp. 229-232 
504 |a Bargonetti, J., Manfredi, J.J., Multiple roles of the tumor suppressor p53 (2002) Curr Opin Oncol, 14 (1), pp. 86-91 
504 |a Barlev, N.A., Liu, L., Chehab, N.H., Mansfield, K., Harris, K.G., Halazonetis, T.D., Berger, S.L., Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases (2001) Molecular Cell, 8 (6), pp. 1243-1254 
504 |a Bartek, J., Lukas, J., Mammalian G1- and S-phase checkpoints in response to DNA damage (2001) Curr Opin Cell Biol, 13 (6), pp. 738-747 
504 |a Bartek, J., Lukas, J., Pathways governing G1/S transition and their response to DNA damage (2001) FEBS Lett, 490 (3), pp. 117-122 
504 |a Bartek, J., Lukas, C., Lukas, J., Checking on DNA damage in S phase (2004) Nat Rev Mol Cell Biol, 5 (10), pp. 792-804 
504 |a Bensaad, K., Vousden, K.H., P53: New roles in metabolism (2007) Trends in Cell Biology, 17 (6), pp. 286-291 
504 |a Bischoff, J.R., Kirn, D.H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., McCormick, F., An adenovirus mutant that replicates selectively in p53- deficient human tumor cells (1996) Science, 274 (5286), pp. 373-376 
504 |a Bode, A.M., Dong, Z., Post-translational modification of p53 in tumorigenesis (2004) Nat Rev Cancer, 4 (10), pp. 793-805 
504 |a Bottger, A., Bottger, V., Sparks, A., Liu, W.L., Howard, S.F., Lane, D.P., Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo (1997) Curr Biol, 7 (11), pp. 860-869 
504 |a Brooks, C.L., Gu, W., Ubiquitination, phosphorylation and acetylation: The molecular basis for p53 regulation (2003) Curr Opin Cell Biol, 15 (2), pp. 164-171 
504 |a Brooks, C.L., Gu, W., P53 ubiquitination: Mdm2 and beyond (2006) Molecular Cell, 21 (3), pp. 307-315 
504 |a Carvajal, D., Tovar, C., Yang, H., Vu, B.T., Heimbrook, D.C., Vassilev, L.T., Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors (2005) Cancer Res, 65 (5), pp. 1918-1924 
504 |a Charrier-Savournin, F.B., Chateau, M.T., Gire, V., Sedivy, J., Piette, J., Dulic, V., P21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress (2004) Mol Biol Cell, 15 (9), pp. 3965-3976 
504 |a Chuikov, S., Kurash, J.K., Wilson, J.R., Xiao, B., Justin, N., Ivanov, G.S., McKinney, K., Reinberg, D., Regulation of p53 activity through lysine methylation (2004) Nature, 432 (7015), pp. 353-360 
504 |a Crighton, D., Wilkinson, S., Ryan, K.M., DRAM links autophagy to p53 and programmed cell death (2007) Autophagy, 3 (1), pp. 72-74 
504 |a El-Deiry, W.S., Regulation of p53 downstream genes (1998) Semin Cancer Biol, 8 (5), pp. 345-357 
504 |a Espinosa, J.M., Mechanisms of regulatory diversity within the p53 transcriptional network (2008) Oncogene, 27 (29), pp. 4013-4023 
504 |a Fridman, J.S., Lowe, S.W., Control of apoptosis by p53 (2003) Oncogene, 22 (56), pp. 9030-9040 
504 |a Gottifredi, V., Prives, C., The S phase checkpoint: When the crowd meets at the fork (2005) Semin Cell Dev Biol, 16 (3), pp. 355-368 
504 |a Grossman, S.R., Deato, M.E., Brignone, C., Chan, H.M., Kung, A.L., Tagami, H., Nakatani, Y., Livingston, D.M., Polyubiquitination of p53 by a ubiquitin ligase activity of p300 (2003) Science, 300 (5617), pp. 342-344 
504 |a Gu, W., Roeder, R.G., Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain (1997) Cell, 90 (4), pp. 595-606 
504 |a Halaby, M.J., Yang, D.Q., P53 translational control: A new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics (2007) Gene, 395 (1-2), pp. 1-7 
504 |a Harris, C.C., P53 tumor suppressor gene: From the basic research laboratory to the clinic- an abridged historical perspective (1996) Carcinogenesis, 17 (6), pp. 1187-1198 
504 |a He, L., He, X., Lowe, S.W., Hannon, G.J., MicroRNAs join the p53 network-another piece in the tumour-suppression puzzle (2007) Nat Rev Cancer, 7 (11), pp. 819-822 
504 |a Ho, J.S., Ma, W., Mao, D.Y., Benchimol, S., P53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest (2005) Mol Cell Biol, 25 (17), pp. 7423-7431 
504 |a Hupp, T.R., Meek, D.W., Midgley, C.A., Lane, D.P., Regulation of the specific DNA binding function of p53 (1992) Cell, 71 (5), pp. 875-886 
504 |a Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E., Yao, T.P., P300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2 (2001) Embo J, 20 (6), pp. 1331-1340 
504 |a Jackson, M.W., Agarwal, M.K., Agarwal, M.L., Agarwal, A., Stanhope-Baker, P., Williams, B.R., Stark, G.R., Limited role of N-terminal phosphoserine residues in the activation of transcription by p53 (2004) Oncogene, 23 (25), pp. 4477-4487 
504 |a Jin, S., Tong, T., Fan, W., Fan, F., Antinore, M.J., Zhu, X., Mazzacurati, L., Zhan, Q., GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity (2002) Oncogene, 21 (57), pp. 8696-8704 
504 |a Jin, Y., Zeng, S.X., Dai, M.S., Yang, X.J., Lu, H., MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation (2002) J Biol Chem, 277 (34), pp. 30838-30843 
504 |a Kaeser, M.D., Iggo, R.D., Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo (2002) Proc Natl Acad Sci USA, 99 (1), pp. 95-100 
504 |a Kawai, H., Nie, L., Wiederschain, D., Yuan, Z.M., Dual role of p300 in the regulation of p53 stability (2001) J Biol Chem, 276 (49), pp. 45928-45932 
504 |a Keller, D.M., Zeng, X., Wang, Y., Zhang, Q.H., Kapoor, M., Shu, H., Goodman, R., Lu, H., A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1 (2001) Molecular Cell, 7 (2), pp. 283-292 
504 |a Krummel, K.A., Lee, C.J., Toledo, F., Wahl, G.M., The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation (2005) Proc Natl Acad Sci USA, 102 (29), pp. 10188-10193 
504 |a Lane, D.P., Cancer. p53, guardian of the genome (1992) Nature, 358 (6381), pp. 15-16 
504 |a Levine, A.J., P53, the cellular gatekeeper for growth and division (1997) Cell, 88 (3), pp. 323-331 
504 |a Marine, J.C., Jochemsen, A.G., Mdmx and Mdm2: Brothers in arms? (2004) Cell Cycle, 3 (7), pp. 900-904 
504 |a McKinney, K., Mattia, M., Gottifredi, V., Prives, C., P53 linear diffusion along DNA requires its C terminus (2004) Molecular Cell, 16 (3), pp. 413-424 
504 |a Meek, D.W., Knippschild, U., Posttranslational modification of MDM2 (2003) Mol Cancer Res, 1 (14), pp. 1017-1026 
504 |a Meulmeester, E., Pereg, Y., Shiloh, Y., Jochemsen, A.G., ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation (2005) Cell Cycle, 4 (9), pp. 1166-1170 
504 |a Midgley, C.A., Desterro, J.M., Saville, M.K., Howard, S., Sparks, A., Hay, R.T., Lane, D.P., An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo (2000) Oncogene, 19 (19), pp. 2312-2323 
504 |a Mills, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., Bradley, A., P63 is a p53 homologue required for limb and epidermal morphogenesis (1999) Nature, 398 (6729), pp. 708-713 
504 |a Moll, U.M., Petrenko, O., The MDM2-p53 interaction (2003) Mol Cancer Res, 1 (14), pp. 1001-1008 
504 |a Montagnoli, A., Tenca, P., Sola, F., Carpani, D., Brotherton, D., Albanese, C., Santocanale, C., Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells (2004) Cancer Res, 64 (19), pp. 7110-7116 
504 |a Muller, S., Berger, M., Lehembre, F., Seeler, J.S., Haupt, Y., Dejean, A., C-Jun and p53 activity is modulated by SUMO-1 modification (2000) J Biol Chem, 275 (18), pp. 13321-13329 
504 |a Murphy, M.E., Polymorphic variants in the p53 pathway (2006) Cell Death Differ, 13 (6), pp. 916-920 
504 |a Murray-Zmijewski, F., Lane, D.P., Bourdon, J.C., P53/p63/p73 isoforms: An orchestra of isoforms to harmonise cell differentiation and response to stress (2006) Cell Death Differ, 13 (6), pp. 962-972 
504 |a Nghiem, P., Park, P.K., Kim Ys, Y.S., Desai, B.N., Schreiber, S.L., ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint (2002) J Biol Chem, 277 (6), pp. 4428-4434 
504 |a Nyberg, K.A., Michelson, R.J., Putnam, C.W., Weinert, T.A., Toward maintaining the genome: DNA damage and replication checkpoints (2002) Annu Rev Genet, 36, pp. 617-656 
504 |a Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Taya, Y., P53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53 (2000) Cell, 102 (6), pp. 849-862 
504 |a Oliner, J.D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K.W., Vogelstein, B., Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53 (1993) Nature, 362 (6423), pp. 857-860 
504 |a Olsson, A., Manzl, C., Strasser, A., Villunger, A., How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? (2007) Cell Death Differ, 14 (9), pp. 1561-1575 
504 |a Oren, M., Decision making by p53: Life, death and cancer (2003) Cell Death Differ, 10 (4), pp. 431-442 
504 |a Ou, Y.H., Chung, P.H., Sun, T.P., Shieh, S.Y., P53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation (2005) Mol Biol Cell, 16 (4), pp. 1684-1695 
504 |a Paris, R., Henry, R.E., Stephens, S.J., McBryde, M., Espinosa, J.M., Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation (2008) Cell Cycle, 7 (15), pp. 2427-2433 
504 |a Pereg, Y., Shkedy, D., De Graaf, P., Meulmeester, E., Edelson-Averbukh, M., Salek, M., Biton, S., Shiloh, Y., Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage (2005) Proc Natl Acad Sci USA, 102 (14), pp. 5056-5061 
504 |a Piwnica-Worms, H., Cell Cycle (1999) Fools Rush In. Nature, 401 (6753), pp. 535-537 
504 |a Rieder, C.L., Maiato, H., Stuck in division or passing through: What happens when cells cannot satisfy the spindle assembly checkpoint (2004) Dev Cell, 7 (5), pp. 637-651 
504 |a Rodriguez, M.S., Desterro, J.M., Lain, S., Midgley, C.A., Lane, D.P., Hay, R.T., SUMO-1 modification activates the transcriptional response of p53 (1999) Embo J, 18 (22), pp. 6455-6461 
504 |a Sabbatini, P., McCormick, F., MDMX inhibits the p300/CBP-mediated acetylation of p53 (2002) DNA Cell Biol, 21 (7), pp. 519-525 
504 |a Saito, S., Goodarzi, A.A., Higashimoto, Y., Noda, Y., Lees-Miller, S.P., Appella, E., Anderson, C.W., ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation (2002) J Biol Chem, 277 (15), pp. 12491-12494 
504 |a Sakaguchi, K., Herrera, J.E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W., Appella, E., DNA damage activates p53 through a phosphorylation-acetylation cascade (1998) Genes Dev, 12 (18), pp. 2831-2841 
504 |a Schuler, M., Green, D.R., Transcription, apoptosis and p53: Catch-22 (2005) Trends Genet, 21 (3), pp. 182-187 
504 |a Selivanova, G., Kawasaki, T., Ryabchenko, L., Wiman, K.G., Reactivation of mutant p53: A new strategy for cancer therapy (1998) Semin Cancer Biol, 8 (5), pp. 369-378 
504 |a Shaulsky, G., Goldfinger, N., Tosky, M.S., Levine, A.J., Rotter, V., Nuclear localization is essential for the activity of p53 protein (1991) Oncogene, 6 (11), pp. 2055-2065 
504 |a Sherr, C.J., G1 phase progression: Cycling on cue (1994) Cell, 79 (4), pp. 551-555 
504 |a Sionov, R.V., Haupt, Y., The cellular response to p53: The decision between life and death (1999) Oncogene, 18 (45), pp. 6145-6157 
504 |a Stavridi, E.S., Chehab, N.H., Malikzay, A., Halazonetis, T.D., Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest (2001) Cancer Res, 61 (19), pp. 7030-7033 
504 |a Stewart, Z.A., Pietenpol, J.A., P53 Signaling and cell cycle checkpoints (2001) Chem Res Toxicol, 14 (3), pp. 243-263 
504 |a Strano, S., Dellorso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A., Blandino, G., Mutant p53: An oncogenic transcription factor (2007) Oncogene, 26 (15), pp. 2212-2219 
504 |a Taylor, W.R., Stark, G.R., Regulation of the G2/M transition by p53 (2001) Oncogene, 20 (15), pp. 1803-1815 
504 |a Taylor, W.R., Agarwal, M.L., Agarwal, A., Stacey, D.W., Stark, G.R., P53 inhibits entry into mitosis when DNA synthesis is blocked (1999) Oncogene, 18 (2), pp. 283-295 
504 |a Teodoro, J.G., Evans, S.K., Green, M.R., Inhibition of tumor angiogenesis by p53: A new role for the guardian of the genome (2007) J Mol Med (Berlin, Germany), 85 (11), pp. 1175-1186 
504 |a Thompson, T., Tovar, C., Yang, H., Carvajal, D., Vu, B.T., Xu, Q., Wahl, G.M., Vassilev, L.T., Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis (2004) J Biol Chem, 279 (51), pp. 53015-53022 
504 |a Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Liu, E.A., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2 (2004) Science, 303 (5659), pp. 844-848 
504 |a Vogel, C., Kienitz, A., Hofmann, I., Muller, R., Bastians, H., Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy (2004) Oncogene, 23 (41), pp. 6845-6853 
504 |a Vogelstein, B., Lane, D., Levine, A.J., Surfing the p53 network (2000) Nature, 408 (6810), pp. 307-310 
504 |a Vousden, K.H., P53: Death Star (2000) Cell, 103 (5), pp. 691-694 
504 |a Vousden, K.H., Lu, X., Live or let die: The cells response to p53 (2002) Nat Rev Cancer, 2 (8), pp. 594-604 
504 |a Wang, Y., Prives, C., Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases (1995) Nature, 376 (6535), pp. 88-91 
504 |a Wang, X.W., Zhan, Q., Coursen, J.D., Khan, M.A., Kontny, H.U., Yu, L., Hollander, M.C., Harris, C.C., GADD45 induction of a G2/M cell cycle checkpoint (1999) Proc Natl Acad Sci USA, 96 (7), pp. 3706-3711 
504 |a Wang, Y.H., Tsay, Y.G., Tan, B.C., Lo, W.Y., Lee, S.C., Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305 (2003) J Biol Chem, 278 (28), pp. 25568-25576 
504 |a Waterman, M.J., Stavridi, E.S., Waterman, J.L., Halazonetis, T.D., ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins (1998) Nat Genet, 19 (2), pp. 175-178 
504 |a Webley, K., Bond, J.A., Jones, C.J., Blaydes, J.P., Craig, A., Hupp, T., Wynford-Thomas, D., Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage (2000) Mol Cell Biol, 20 (8), pp. 2803-2808 
504 |a Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T., Lane, D.P., Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity (2004) Cell, 118 (1), pp. 83-97 
504 |a Yang, A., McKeon, F., P63 and P73: P53 mimics, menaces and more (2000) Nat Rev Mol Cell Biol, 1 (3), pp. 199-207 
504 |a Zhu, Y., Alvarez, C., Doll, R., Kurata, H., Schebye, X.M., Parry, D., Lees, E., Intra-S-phase checkpoint activation by direct CDK2 inhibition (2004) Mol Cell Biol, 24 (14), pp. 6268-6277 
520 3 |a p53 is a widely conserved tumor suppressor protein that is frequently inactivated in human cancer. p53 functions primarily as a transcription factor regulating the expression of a growing repertoire of target genes. p53 integrates signals from many stress-activated pathways and is subject to multiple posttranslational modifications. Phosphorylation and acetylation have been implicated in the regulation of p53 stability and activity. In response to DNA damage, hypoxia, oncogene activation and other types of stress, activated p53 triggers a variety of cellular programs, often in a stimuli- and cell type-specific manner. In particular, the role of p53 in cell growth arrest and apoptosis is criticial for its tumor suppressor activity. © 2010 Springer-Verlag Berlin Heidelberg.  |l eng 
593 |a Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, United States 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
700 1 |a Manfredi, J.J. 
773 0 |d Springer Berlin Heidelberg, 2010  |h pp. 375-395  |p Sign. Transduction: Pathways, Mechanisms and Dis.  |z 9783642021114  |t Signal Transduction: Pathways, Mechanisms and Diseases 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84900600620&doi=10.1007%2f978-3-642-02112-1_20&partnerID=40&md5=63e0546dc7c588087e99607414273ed1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-642-02112-1_20  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97836420_v_n_p375_Giono  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97836420_v_n_p375_Giono  |y Registro en la Biblioteca Digital 
961 |a paper_97836420_v_n_p375_Giono  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 73884