Estimating the joint spectral radius of a nonseparable multiwavelet

The joint spectral radius ρ of 2 matrices is related to the boundedness of all their products. Calculating ρ is known to be NP-hard. In this work we estimate the joint spectral radius associated to a bidimensional separable multiwavelet, in order to analyze its Hölder continuity. To the author'...

Descripción completa

Detalles Bibliográficos
Autor principal: Ruedin, A.M.C
Autor Corporativo: Chilean Computer Science Society (Autor, autor)
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: IEEE Computer Society 2003
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07501caa a22007697a 4500
001 PAPER-12705
003 AR-BaUEN
005 20240513203847.0
008 190411s2003 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84945184513 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ruedin, A.M.C. 
245 1 0 |a Estimating the joint spectral radius of a nonseparable multiwavelet 
260 |b IEEE Computer Society  |c 2003 
270 1 0 |m Ruedin, A.M.C.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina 
506 |2 openaire  |e Política editorial 
504 |a Blondel, V., Gaubert, S., Tsitsiklis, J., Approximating the Spectral Radius of Sets of Matrices in the Max-algebra is NP-hard, , preprint 
504 |a Blondel, V., Tsitsiklis, J., The boundedness of all products of a pair of matrices is undecidable (2000) Elsevier Systems & Control Letters, 41, pp. 135-140 
504 |a Cabrelli, C., Heil, C., Molter, U., Accuracy of lattice translates of several multidimensional refinable functions (1998) Journal of Approximation Theory, 95 (1), pp. 5-52 
504 |a Cabrelli, C., Heil, C., Molter, U., (1999) Polynomial Reproduction by Refinable Functions, , Ka-Sing Lau 
504 |a Cabrelli, C., Heil, C., Molter, U., (1999) Self-similarity and Multiwavelets in Higher Dimensions, pp. 1-80. , preprint 
504 |a Cohen, A., Daubechies, I., Non-separable bidimensional wavelet bases (1993) Revista Matematica Iberoamericana, 9 (1), pp. 51-137 
504 |a Daubechies, I., (1992) Ten Lectures on Wavelets, , Society for Industrial and Appl Mathematics 
504 |a Grochenig, K., Madych, W., Multiresolution analysis, haar bases, and self-similar tilings (1992) IEEE Trans. on Information Theory, 38, pp. 558-568 
504 |a Heil, C., Colella, D., (1994) Dilation Equations and the Smoothness of Compactly Supported Wavelets, , J. Benedetto and M. Frazier, editors, CRC Press 
504 |a Jiang, Q., On the design of multifilter banks and orthonormal multiwavelet bases (1998) IEEE Transactions on Signal Processing, 46 (12), pp. 3292-3303 
504 |a Kovacevic, J., Vetterli, M., New Results on Multidimensional Filter Banks and Wavelets, , preprint 
504 |a Kovacevic, J., Vetterli, M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for rn (1992) IEEE Transactions on Information Theory, 38 (2), pp. 533-555 
504 |a Lawton, W., Lee, S., Shen, Z., Stability and orthonormality of multivariate refinable functions (1997) SIAM J. Math. Anal., 28 (4), pp. 999-1014 
504 |a Lawton, W., Resnikoff, M., Multidimensional wavelet bases (1990) AWARE, , preprint 
504 |a Ng, M., Bose, N., Mathematical analysis of super-resolution methodology (2003) IEEE Signal Processing Magazine, 20 (3), pp. 62-74 
504 |a Park, S.C., Park, M.K., Kang, M.G., Super-resolution image reconstruction: A technical overview (2003) IEEE Signal Processing Magazine, 20 (3), pp. 21-36 
504 |a Patti, A., Altunbasak, Y., Artifact reduction for set theoretic super-resolution image reconstruction with edge adative constraints and higher -order interpolants (2001) IEEE Trans Signal Processing, 10 (1), pp. 179-186 
504 |a Plonka, G., Strela, V., Construction of multiscaling functions with approximation and symmetry (1998) SIAM Journal of Mathematical Analysis, 29 (2), pp. 481-510 
504 |a Ruedin, A., Nonseparable orthogonal multiwavelets with 2 and 3 vanishing moments on the quincunx grid (1999) Proceedings SPIE Wavelet Appl. Signal Image Proc. VII, 3813, pp. 455-466 
504 |a Ruedin, A.M.C., Balanced nonseparable orthogonal multiwavelets with two and three vanishing moments on the quincunx grid (2000) Proceedings of SPIE, 4119, pp. 519-527. , Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. Laine, M. Unser, Editors 
504 |a Ruedin, A.M.C., Construction of nonseparable multiwavelets for nonlinear image compression (2002) Eurasip Journal of Applied Signal Processing, 2002 (1), pp. 73-79 
504 |a Ruedin, A.M.C., (2003) Nonseparable Multiwavelets: Construction and Applications to Image Processing, , PhD thesis, Universidad de Buenos Aires, May 
504 |a Schultz, R., Stevenson, R., A bayesian approach to image expansion for improved definition (1994) IEEE Trans Image Proc, 3, pp. 233-242 
504 |a Strang, G., Nguyen, T., (1996) Wavelets and Filter Banks, , Wellesley Cambridge Press 
504 |a Tham, J., Shen, L., Lee, S., Tan, H., A general approach for analysis and applications of discrete multiwavelet transforms (2000) IEEE Transactions on Signal Processing, 48 (2), pp. 457-464 
504 |a Xia, X.-G., Suter, B., Vector-valued wavelets and vector filter banks (1996) IEEE Trans on Signal Proc, 44 (3), pp. 508-518A4 - Chilean Computer Science Society 
520 3 |a The joint spectral radius ρ of 2 matrices is related to the boundedness of all their products. Calculating ρ is known to be NP-hard. In this work we estimate the joint spectral radius associated to a bidimensional separable multiwavelet, in order to analyze its Hölder continuity. To the author's knowledge this has not been done. The analysis aims at testing the aplicability of the multiwavelet transform to those aspects of image processing where continuous basis functions perform best, such as image synthesis, image magnification and image compression. We adapt an algorithm due to Heil and Colella, that works for unidimensional wavelets, to our more complex setting, to prove that ρ < 1 , and show the performance of the multiwavelet for image magnification. © 2003 IEEE.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a JOINT SPECTRAL RADIUS 
690 1 0 |a MAGNIFICATION 
690 1 0 |a MULTIWAVELET 
690 1 0 |a NONSEPARABLE 
690 1 0 |a IMAGE PROCESSING 
690 1 0 |a BASIS FUNCTIONS 
690 1 0 |a IMAGE MAGNIFICATION 
690 1 0 |a IMAGE SYNTHESIS 
690 1 0 |a JOINT SPECTRAL RADIUS 
690 1 0 |a MAGNIFICATION 
690 1 0 |a MULTI-WAVELET TRANSFORM 
690 1 0 |a MULTIWAVELET 
690 1 0 |a NONSEPARABLE 
690 1 0 |a MATRIX ALGEBRA 
710 1 |a Chilean Computer Science Society  |4 aut  |e autor 
711 2 |d 6 November 2003 through 7 November 2003  |g Código de la conferencia: 114193 
773 0 |d IEEE Computer Society, 2003  |g v. 2003-January  |h pp. 109-115  |p Proc. Int. Conf. Chilean Comput. Sci. Soc. SCCC  |n Proceedings - International Conference of the Chilean Computer Science Society, SCCC  |x 15224902  |z 0769520081  |t 23rd International Conference of the Chilean Computer Science Society, SCCC 2003 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945184513&doi=10.1109%2fSCCC.2003.1245451&partnerID=40&md5=6a4e18448cfc309b8695567a0486a5ad  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/SCCC.2003.1245451  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15224902_v2003-January_n_p109_Ruedin  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15224902_v2003-January_n_p109_Ruedin  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_15224902_v2003-January_n_p109_Ruedin  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion