Combinatorial hardness proofs for polynomial evaluation

We exhibit a new method for showing lower bounds for the time complexity of polynomial evaluation procedures. Time, denoted by L, is measured in terms of nonscalar arithmetic operations. The time complexity function considered in this paper is L2. In contrast with known methods for proving lower com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aldaz, M.
Otros Autores: Heintz, J., Matera, G., Montaña, J.L, Pardo, L.M
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 1998
Materias:
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08227caa a22009497a 4500
001 PAPER-12414
003 AR-BaUEN
005 20230518204237.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84896693492 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Aldaz, M. 
245 1 0 |a Combinatorial hardness proofs for polynomial evaluation 
260 |c 1998 
270 1 0 |m Universidad Publica de Navarra, Departamento de Matemática e Informática, 31006 Pamplona, Spain 
506 |2 openaire  |e Política editorial 
504 |a Aldaz, M., Heintz, J., Matera, G., Montana, J.L., Pardo, L.M., Time-space tradeoffs in algebraic complexity theory (1996) J. of Complexity, , (submitted to) 
504 |a Baur, W., Simplified lower bounds for polynomials with algebraic coefficients (1997) J. of Complexity, 13 (1), pp. 38-41 
504 |a Belaga, E.G., Some problems involved in the computations of polynomials (1958) Dokl. Akad. Nauk. SSSR, 123, pp. 775-777 
504 |a Bochnak, J., Coste, M., Roy, M.-F., Géométrie Algébrique Réelle (1987) Ergebnisse der Mathematik und Ihrer Grenzgebiete, 12. , 3. Folge Springer 
504 |a Borodin, A., Munro, I., (1975) The Computational Complexity of Algebraic and Numeric Problems, , American Elsevier 
504 |a Bürgisser, P., Clausen, M., Shokrollahi, A., Algebraic complexity theory (1997) A Series of Comprehensive Studies in Mathematics, 315. , Springer 
504 |a Fitchas, N., Galligo, A., Morgenstern, J., Precise sequential and parallel complexity bounds for the quantifier elimination over algebraically closed fields (1990) J. Pure Appl. Algebra, 67, pp. 1-14 
504 |a Von Zur Gathen, J., Algebraic complexity theory (1988) Ann. Review of Comp. Sci., 3, pp. 317-347 
504 |a Von Zur Gathen, J., Strassen, V., Some polynomials that are hard to compute (1980) Theoret. Comp. Sc., 11 (3), pp. 331-335 
504 |a Heintz, J., On the computational complexity of polynomials and bilinear mappings (1989) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lectures Notes in Computer Science, 356, pp. 269-300. , A survey. L. Huget and A. Poli, editors Springer 
504 |a Heintz, J., Morgenstern, J., On the intrinsic complexity of elimination theory (1993) J. of Complexity, 9 (4), pp. 471-498 
504 |a Heintz, J., Schnorr, C.P., Testing polynomials which are easy to compute. Logic and algorithmic: An international symposium held in honor of ernst specker (1982) L'Enseignement de Mathématiques, 30, pp. 237-254. , Genève 
504 |a Heintz, J., Sieveking, M., Lower bounds for polynomials with algebraic coefficients (1980) Theoret. Comp. Sc., 11 (3), pp. 321-330 
504 |a Krick, T., Pardo, L.M., A computational method for diophantine approximation (1996) Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA'94, Progress in Mathematics, 143, pp. 193-254. , L. González-Vega and T. Recio, editors Birkhäuser 
504 |a Kung, H.T., Traub, J.F., All algebraic functions can be computed fast (1978) J. of the ACM, 25 (2), pp. 245-260 
504 |a Motzkin, T.S., Evaluation of polynomials and evaluation of rational functions (1955) Bull. Amer. Math. Soc., 61, p. 163 
504 |a Pardo, L.M., How lower and upper complexity bounds meet in elimination theory (1995) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Proceedings AAECC-11, Lecture Notes in Computer Science, 948, pp. 33-69. , G. Cohen, M. Giusti and T. Mora, editors Springer 
504 |a Paterson, M.S., Stockmeyer, L.J., On the number of nonscalar multiplications necessary to evaluate polynomials (1973) SIAM J. of Computing, 2 (1), pp. 60-66 
504 |a Puddu, S., Sabia, J., An effective algorithm for quantifier elimination over algebraically closed fields using straight-line programs J. of Pure Appl. Algebra, , (to appear) 
504 |a Schnorr, C.P., Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials (1978) Theoret. Comp. Sc., 7 (3), pp. 251-261 
504 |a Shoup, V., Smolensky, R., Lower bounds for polynomial evaluation and interpolation problems (1991) Proceedings of the 32nd Annual Symposium FOCS, pp. 378-383. , IEEE Computer Society Press 
504 |a Stoss, H.J., On the representation of rational functions of bounded complexity (1989) Theoret. Comp. Sc., 64 (1), pp. 1-13 
504 |a Strassen, V., Polynomials with rational coefficients which are hard to compute (1974) SIAM J. of Computing, 3, pp. 128-149 
504 |a Strassen, V., Algebraic complexity theory (1990) Handbook of Theoretical Computer Science, A, pp. 635-672. , Chap. 11 Elsevier Science Publishers 
520 3 |a We exhibit a new method for showing lower bounds for the time complexity of polynomial evaluation procedures. Time, denoted by L, is measured in terms of nonscalar arithmetic operations. The time complexity function considered in this paper is L2. In contrast with known methods for proving lower complexity bounds, our method is purely combinatorial and does not require powerful tools from algebraic or diophantine geometry. By means of our method we are able to verify the computational hardness of new natural families of univariate polynomials for which this was impossible up to now. By computational hardness we mean that the complexity function L2 grows linearly in the degree of the polynomials of the family we are considering. Our method can also be applied to classical questions of transcendence proofs in number theory and geometry. A list of (old and new) formal power series is given whose transcendency can be shown easily by our method. © Springer-Verlag Berlin Heidelberg 1998.  |l eng 
593 |a Universidad Publica de Navarra, Departamento de Matemática e Informática, 31006 Pamplona, Spain 
593 |a Universidad de Cantabria, Fac. de Ciencias, Depto. de Matemáticas, Est. y Comp., 39071 Santander, Spain 
593 |a Universidad de Buenos Aires, FCEyN, Departamento de Matemáticas, (1428) Buenos Aires, Argentina 
593 |a Universidad Nacional de Gral. Sarmiento, Instituto de Desarrollo Humano, (1663) San-Miguel, Argentina 
690 1 0 |a ARITHMETIC OPERATIONS 
690 1 0 |a COMPLEXITY FUNCTIONS 
690 1 0 |a COMPUTATIONAL HARDNESS 
690 1 0 |a FORMAL POWER SERIES 
690 1 0 |a LOWER BOUNDS 
690 1 0 |a LOWER COMPLEXITY 
690 1 0 |a POLYNOMIAL EVALUATION 
690 1 0 |a TIME COMPLEXITY 
690 1 0 |a ARITHMETIC OPERATIONS 
690 1 0 |a COMPLEXITY FUNCTIONS 
690 1 0 |a COMPUTATIONAL HARDNESS 
690 1 0 |a EXTENDED ABSTRACTS 
690 1 0 |a FORMAL POWER SERIES 
690 1 0 |a LOWER COMPLEXITY 
690 1 0 |a POLYNOMIAL EVALUATION 
690 1 0 |a TIME COMPLEXITY 
690 1 0 |a COMPUTER SCIENCE 
690 1 0 |a FUNCTION EVALUATION 
690 1 0 |a NUMBER THEORY 
690 1 0 |a FUNCTION EVALUATION 
690 1 0 |a NUMBER THEORY 
690 1 0 |a POLYNOMIALS 
690 1 0 |a POLYNOMIALS 
650 1 7 |2 spines  |a ALGEBRA 
700 1 |a Heintz, J. 
700 1 |a Matera, G. 
700 1 |a Montaña, J.L. 
700 1 |a Pardo, L.M. 
711 2 |c Brno  |d 24 August 1998 through 28 August 1998  |g Código de la conferencia: 103183 
773 0 |d 1998  |g v. 1450 LNCS  |h pp. 167-175  |p Lect. Notes Comput. Sci.  |n Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  |x 03029743  |w (AR-BaUEN)CENRE-983  |z 3540648275  |z 9783540648277  |t 23rd International Symposium on the Mathematical Foundations of Computer Science, MFCS 1998 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896693492&partnerID=40&md5=50d6f80bae43ce90fe4125954ef744b6  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03029743_v1450LNCS_n_p167_Aldaz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v1450LNCS_n_p167_Aldaz  |y Registro en la Biblioteca Digital 
961 |a paper_03029743_v1450LNCS_n_p167_Aldaz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 73367