On the Elementary Retarded, Ultrahyperbolic Solution of the Klein-Gordon Operator, Iterated k Times

Let t = (t1,...,tn) be a point of ℝn. We shall write . We put, by the definition, Wα(u, m) = (m-2u)(α - n)/4[π(n - 2)/22(α + n - 2)/2G{cyrillic}(α/2)]J(α - n)/2(m2u)1/2; here α is a complex parameter, m a real nonnegative number, and n the dimension of the space. Wα(u, m), which is an ordinary funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Trione, S.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 1988
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02569caa a22002777a 4500
001 PAPER-12005
003 AR-BaUEN
005 20230518204213.0
008 190411s1988 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84954428232 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Trione, S.E. 
245 1 3 |a On the Elementary Retarded, Ultrahyperbolic Solution of the Klein-Gordon Operator, Iterated k Times 
260 |b Blackwell Publishing Ltd  |c 1988 
270 1 0 |m Trione, S.E.; Departmento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina 
506 |2 openaire  |e Política editorial 
520 3 |a Let t = (t1,...,tn) be a point of ℝn. We shall write . We put, by the definition, Wα(u, m) = (m-2u)(α - n)/4[π(n - 2)/22(α + n - 2)/2G{cyrillic}(α/2)]J(α - n)/2(m2u)1/2; here α is a complex parameter, m a real nonnegative number, and n the dimension of the space. Wα(u, m), which is an ordinary function if Re α ≥ n, is an entire distributional function of α. First we evaluate (□ + m2)Wα + 2(u, m) = Wα(u, m), where (□ + m2) is the ultrahyperbolic operator. Then we express Wα(u, m) as a linear combination of Rα(u) of differntial orders; Rα(u) is Marcel Riesz's ultrahyperbolic kernel. We also obtain the following results: W-2k(u, m) = (□ + m2)kδ, k = 0, 1,...; W0(u, m) = δ; and (□ + m2)kW2k(u, m) = δ. Finally we prove that Wα(u, m = 0) = Rα(u). Several of these results, in the particular case μ = 1, were proved earlier by a completely different method. © 2015 Wiley Periodicals, Inc., A Wiley Company.  |l eng 
593 |a Departmento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
773 0 |d Blackwell Publishing Ltd, 1988  |g v. 79  |h pp. 127-141  |k n. 2  |p Stud. Appl. Math.  |x 00222526  |w (AR-BaUEN)CENRE-6932  |t Studies in Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954428232&doi=10.1002%2fsapm1988792127&partnerID=40&md5=086ee5e0b8acf2cab0f5f580bcdedd1d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/sapm1988792127  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222526_v79_n2_p127_Trione  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222526_v79_n2_p127_Trione  |y Registro en la Biblioteca Digital 
961 |a paper_00222526_v79_n2_p127_Trione  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72958