Automatic Representation of Binary Images

In this correspondence we propose a method to represent black and white images through the description of the boundaries of the objects that define such images. In order to obtain such a representation, this method uses several algorithms which perform boundary extraction, contour following, segment...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cabrelli, C.A
Otros Autores: Molter, U.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1990
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04488caa a22005897a 4500
001 PAPER-11965
003 AR-BaUEN
005 20230518204210.0
008 190411s1990 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0025547190 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cabrelli, C.A. 
245 1 0 |a Automatic Representation of Binary Images 
260 |c 1990 
506 |2 openaire  |e Política editorial 
504 |a Duda, R.O., Hart, P.E., (1973) Pattern Classification and Scene Analysis, , New York: Wiley 
504 |a Hildebrandt, F.B., (1987) Introduction to Numerical Analysis, , 2nd ed. New York: Dover 
504 |a Jain, A.K., (1988) Fundamentals in Digital Image Processing, , Englewood Cliffs, NJ: Prentice-Hall 
504 |a Pavlidis, T., (1982) A Igorithms for Graphics and Image Processing, , Rockville, MD: Computer Science Press 
504 |a Serra, J., (1982) Image Analysis and Mathematical Morphology, , New York: Academic 
520 3 |a In this correspondence we propose a method to represent black and white images through the description of the boundaries of the objects that define such images. In order to obtain such a representation, this method uses several algorithms which perform boundary extraction, contour following, segmentation, pattern classification, and curve fitting. One of the great advantages of this method is that the image can be reconstructed at any size. It can also be rotated or translated without losing any quality. In addition to achieving a good data compression rate the coding-decoding process is computationally very efficient We also show the application of these algorithms to characters in order to obtain downloadable fonts for modern laser printers. © 1990 IEEE  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Image representation is one of the major topics of digital image processing. This subject has been addressed from a number of different points of view. Each approach achieves, more or less successfully, the most desirable features of a proper representation, such as data compression, simplicity of coding and decoding, scaling and invariance under rigid motions, Manuscript received December 21, 1988; revised June 14, 1990. Recommended for acceptance by C.Y. Suen. This work was supported by the Conicet, Argentina. The authors are with the Department of Applied Mathematics, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada, on leave to the Departamento de Matematica, Universidad de Buenos Ares, Pahellon I Ciudad Universitaria, 1428 Buenos Ares, Argentina. IEEE Log Number 9038393. 
593 |a Department of Applied Mathematics, University of Waterloo, Waterloo, Ont. N2L 3G1, United States 
593 |a Departamento de Matematica, Universidad de Buenos Aires, Pabellon I Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a BOUNDARY EXTRACTION 
690 1 0 |a CHARACTER DESCRIPTION 
690 1 0 |a COMPUTATIONAL VISION 
690 1 0 |a CONTOUR-FOLLOWING 
690 1 0 |a CONTROL AND SINGULAR POINTS 
690 1 0 |a CURVE FITTING 
690 1 0 |a CURVE RECOGNITION 
690 1 0 |a SEGMENTATION 
690 1 0 |a SHAPE DESCRIPTION 
690 1 0 |a COMPUTER PROGRAMMING--ALGORITHMS 
690 1 0 |a PRINTING--LASER APPLICATIONS 
690 1 0 |a BOUNDARY EXTRACTION 
690 1 0 |a CURVE FITTING 
690 1 0 |a FEATURE EXTRACTION 
690 1 0 |a IMAGE REPRESENTATION 
690 1 0 |a IMAGE SEGMENTATION 
690 1 0 |a PATTERN CLASSIFICATION 
690 1 0 |a IMAGE PROCESSING 
700 1 |a Molter, U.M. 
773 0 |d 1990  |g v. 12  |h pp. 1190-1196  |k n. 12  |p IEEE Trans Pattern Anal Mach Intell  |x 01628828  |w (AR-BaUEN)CENRE-1579  |t IEEE Transactions on Pattern Analysis and Machine Intelligence 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025547190&doi=10.1109%2f34.62608&partnerID=40&md5=803fc10544e5e6294f8ff0197e2dd372  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/34.62608  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01628828_v12_n12_p1190_Cabrelli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01628828_v12_n12_p1190_Cabrelli  |y Registro en la Biblioteca Digital 
961 |a paper_01628828_v12_n12_p1190_Cabrelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72918