Differential Erythropoietin Action upon Cells Induced to Eryptosis by Different Agents

Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calci...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vota, D.M
Otros Autores: Maltaneri, R.E, Wenker, S.D, Nesse, A.B, Vittori, D.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13647caa a22014057a 4500
001 PAPER-11839
003 AR-BaUEN
005 20230518204202.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84874232618 
024 7 |2 cas  |a calcimycin, 52665-69-7; calcium, 14092-94-5, 7440-70-2; erythropoietin, 11096-26-7; hydrogen peroxide, 7722-84-1; sodium nitrite, 7632-00-0; Calcimycin, 52665-69-7; Calcium, 7440-70-2; Erythropoietin, 11096-26-7; Hydrogen Peroxide, 7722-84-1; Ionophores; Oxidants; Phosphatidylserines; Reactive Oxygen Species; Sodium Nitrite, 7632-00-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CBBIF 
100 1 |a Vota, D.M. 
245 1 0 |a Differential Erythropoietin Action upon Cells Induced to Eryptosis by Different Agents 
260 |c 2013 
270 1 0 |m Vittori, D. C.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina; email: dvittori@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bosman, G.J., Willekens, F.L., Were, J.M., Erythrocyte aging: a more than superficial resemblance to apoptosis? (2005) Cellular Physiology and Biochemistry, 16, pp. 1-8 
504 |a Daugas, E., Candé, C., Kroemer, G., Erythrocytes: Death of a mummy (2001) Cell Death and Differentiation, 8, pp. 1131-1133 
504 |a Lang, K.S., Lang, P.A., Bauer, C., Duranton, C., Wiederm, T., Huber, S., Lang, F., Mechanisms of suicidal erythrocyte death (2005) Cellular Physiology and Biochemistry, 15, pp. 195-202 
504 |a Lang, K.S., Myssina, S., Brand, V., Sandu, C., Lang, P.A., Berchtold, S., Huber, S.M., Wieder, T., Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes (2004) Cell Death and Differentiation, 11, pp. 231-243 
504 |a Berg, C.P., Engels, I.H., Rothbart, A., Lauber, K., Renz, A., Schlosser, S.F., Schulze-Osthoff, K., Wesselborg, S., Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis (2001) Cell Death and Differentiation, 8, pp. 1197-1206 
504 |a Soupene, E., Kuypers, F.A., Identification of an erythroid ATP-dependent aminophospholipid transporter (2006) British Journal of Haematology, 133, pp. 436-438 
504 |a Pietraforte, D., Matarrese, P., Straface, E., Gambardella, L., Metere, A., Scorza, G., Leto, T., Minetti, M., Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes (2007) Free Radical Biology & Medicine, 42, pp. 202-214 
504 |a Schwartz, A.B., Kahn, S.B., Kelch, B., Kim, K.E., Pequignot, E., Red blood cell improved survival due to recombinant human erythropoietin explained effectiveness of less frequent, low dose subcutaneous therapy (1992) Clinical Nephrology, 38, pp. 283-289 
504 |a Polenakovic, M., Sikole, A., Is erythropoietin a survival factor for red blood cells? (1996) Journal of American Society of Nephrology, 7, pp. 1178-1182 
504 |a Chattopadhyay, A., Das Choudhury, T., Bandyopadhyay, D., Datta, A., Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical (2000) Biochemical Pharmacology, 59, pp. 419-425 
504 |a Myssina, S., Huber, S.M., Birka, C., Lang, P.A., Lang, K.S., Friedrich, B., Risler, T., Lang, F., Inhibition of erythrocyte cation channels by erythropoietin (2003) Journal of American Society of Nephrology, 14, pp. 2750-2757 
504 |a Bratosin, D., Estaquier, J., Petit, F., Arnoult, D., Quatannens, B., Tissier, J.-P., Slomianny, C., Ameisen, J.C., Programmed cell death in mature erythrocytes: A model for investigating death effector pathways operating in the absence of mitochondria (2001) Cell Death and Differentiation, 8, pp. 1143-1156 
504 |a Vittori, D., Nesse, A., Garbossa, G., Morphologic and functional alterations of erythroid cells induced by long term ingestion of aluminium (1999) Journal of Inorganic Biochemistry, 76, pp. 113-120 
504 |a Ghoti, H., Amer, J., Winder, A., Rachmilewitz, E., Fibach, E., Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome (2007) European Journal of Haematology, 79, pp. 463-467 
504 |a Callero, M., Pérez, G., Vittori, D., Pregi, N., Nesse, A., Modulation of protein tyrosine phosphatase 1B by erythropoietin in UT-7 cell line (2007) Cellular Physiology and Biochemistry, 20, pp. 319-328 
504 |a Vittori, D., Garbossa, G., Lafourcade, C., Pérez, G., Nesse, A., Human erythroid cells are affected by aluminium. Alteration of membrane band 3 protein (2002) Biochimica Biophysica Acta (Biomembranes), 1558, pp. 142-150 
504 |a Romero, P.J., Romero, E., The role of calcium metabolism in human red blood cell ageing: a proposal (1999) Blood Cells, Molecules, & Diseases, 25, pp. 9-19 
504 |a Bevers, E.M., Williamson, P.L., Phospholipid scramblase: An update (2010) FEBS Letters, 584, pp. 2724-2730 
504 |a Szabó, C., Ischiropoulos, H., Radi, R., Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics (2007) Nature Reviews Drug Discovery, 6, pp. 662-680 
504 |a Burak Çimen, M.Y., Free radical metabolism in human erythrocytes (2008) Clinica Chimica Acta, 390, pp. 1-11 
504 |a Palek, J., Stewart, G., Lionetti, F.J., The dependence of shape of human erythrocyte ghosts on calcium, magnesium, and adenosine triphosphate (1974) Blood, 44, pp. 583-597 
504 |a Kirkpatrick, F.H., Hillman, D.G., La Celle, P.L., A23187 and red cells: Changes in deformability, K+, Mg2+, Ca2+ and ATP (1975) Experientia, 31, pp. 653-654 
504 |a Daleke, D.L., Regulation of phospholipid asymmetry in the erythrocyte membrane (2008) Current Opinion in Hematology, 15, pp. 191-195 
504 |a Manno, S., Takakuwa, Y., Mohandas, N., Identification of a functional role of lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability (2002) Proceedings of the National Academy of Sciences, 99, pp. 1943-1948 
504 |a Wllekens, F.L.A., Were, J.M., Groenen-Dopp, Y.A.M., Roerdinkholder-Stoelwinder, B., de Pauw, B., Bosman, G.J.C., Erythrocyte vesiculation: A self-protective mechanism? (2008) British Journal of Haematology, 141, pp. 549-556 
504 |a Hagelberg, C., Allan, D., Restricted diffusion of integral membrane proteins and polyphosphoinositides leads to their depletion in microvesicles released from human erythrocytes (1990) Biochemical Journal, 271, pp. 831-834 
504 |a Richards, R.S., Wang, L., Jelinek, H., Erythrocyte oxidative damage in chronic fatigue syndrome (2007) Archives of Medical Research, 38, pp. 94-98 
504 |a Quintanar-Escorza, M.A., González-Martínez, M.T., Intriago-Ortega, M.P., Calderón-Salinas, J.V., Oxidative damage increases intracellular free calcium [Ca2+]i concentration in human erythrocytes incubated with lead (2010) Toxicology in Vitro, 24, pp. 1338-1346 
504 |a Calderón-Salinas, J.V., Muñoz-Reyes, E.G., Guerrero-Romero, J.F., Rodríguez-Morán, M., Bracho-Riquelme, R.L., Carrera-Gracia, M.A., Quintanar-Escorza, M.A., Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease (2011) Molecular and Cellular Biochemistry, 357, pp. 171-179 
504 |a Mallozi, C., Di Stasi, A.M., Minetti, M., Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn (2001) FEBS Letters, 503, pp. 189-195 
504 |a Chen, K., Piknova, B., Pittman, R.N., Schechter, A.N., Popel, A.S., Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes (2008) Nitric Oxide, 18, pp. 47-60 
504 |a Frangioni, J.V., Oda, A., Smith, M., Salzman, E.W., Neel, B.G., Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets (1993) EMBO Journal, 12, pp. 4843-4846 
504 |a Ciana, A., Minetti, G., Balduini, C., Phosphotyrosine phosphatases acting on band 3 in human erythrocytes of different age: PTP1B processing during cell ageing (2004) Bioelectrochemistry, 62, pp. 169-173 
504 |a Metere, A., Iorio, E., Pietraforte, D., Podo, F., Minetti, M., Peroxynitrite signaling in human erythrocytes: synergistic role of hemoglobin oxidation and band 3 tyrosine phosphorylation (2009) Archives of Biochemistry and Biophysics, 484, pp. 173-182 
520 3 |a Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents. © 2012 Springer Science+Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Acknowledgments This work was supported by grants from the University of Buenos Aires (UBA), the National Council of Scientific and Technical Research (CONICET) and the National Agency for Scientific and Technologic Promotion (ANPCYT). Dr. Alcira Nesse and Dr. Daniela Vittori are research scientists at the National Council of Scientific and Technical Research (CONICET), and Lic. Daiana Vota has received a fellowship from CONICET (Argentina). 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina 
593 |a Pabellón II, Piso 4, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina 
690 1 0 |a CALCIUM OVERLOAD 
690 1 0 |a ERYPTOSIS 
690 1 0 |a ERYTHROPOIETIN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a CALCIMYCIN 
690 1 0 |a CALCIUM 
690 1 0 |a ERYTHROPOIETIN 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a IONOPHORE 
690 1 0 |a OXIDIZING AGENT 
690 1 0 |a PHOSPHATIDYLSERINE 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a SODIUM NITRITE 
690 1 0 |a ADULT 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a CELL CULTURE 
690 1 0 |a CYTOLOGY 
690 1 0 |a DOSE RESPONSE 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ERYTHROCYTE 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a HUMAN 
690 1 0 |a INTRACELLULAR SPACE 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a METABOLISM 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a ADULT 
690 1 0 |a APOPTOSIS 
690 1 0 |a CALCIMYCIN 
690 1 0 |a CALCIUM 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a DOSE-RESPONSE RELATIONSHIP, DRUG 
690 1 0 |a ERYTHROCYTES 
690 1 0 |a ERYTHROPOIETIN 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a HUMANS 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a INTRACELLULAR SPACE 
690 1 0 |a IONOPHORES 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a OXIDANTS 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PHOSPHATIDYLSERINES 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a SODIUM NITRITE 
700 1 |a Maltaneri, R.E. 
700 1 |a Wenker, S.D. 
700 1 |a Nesse, A.B. 
700 1 |a Vittori, D.C. 
773 0 |d 2013  |g v. 65  |h pp. 145-157  |k n. 2  |p Cell Biochem. Biophys.  |x 10859195  |t Cell Biochemistry and Biophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874232618&doi=10.1007%2fs12013-012-9408-4&partnerID=40&md5=48e401b7949d1fdfc9561a5ac93c96ac  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s12013-012-9408-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10859195_v65_n2_p145_Vota  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10859195_v65_n2_p145_Vota  |y Registro en la Biblioteca Digital 
961 |a paper_10859195_v65_n2_p145_Vota  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72792