Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages

The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Basanta, M.F
Otros Autores: De Escalada Plá, M.F, Stortz, C.A, Rojas, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17245caa a22016337a 4500
001 PAPER-11794
003 AR-BaUEN
005 20230518204159.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84868222690 
024 7 |2 cas  |a cellulose, 61991-22-8, 68073-05-2, 9004-34-6; galacturonic acid, 14982-50-4, 685-73-4; pectin, 9000-69-5; rhamnose, 10485-94-6, 3615-41-6; Carbohydrates; Cellulose, 9004-34-6; Hexuronic Acids; Pectins; Polymers; Polysaccharides; Rhamnose, 10485-94-6; galacturonic acid, 4JK6RN80GF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CAPOD 
100 1 |a Basanta, M.F. 
245 1 0 |a Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages 
260 |c 2013 
270 1 0 |m Stortz, C.A.; Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: stortz@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andrews, P.K., Shulin, L., Cell wall hydrolytic enzyme activity during development of nonclimateric sweet cherry (Prunus avium L.) fruit (1995) Journal of Horticultural Science, 70, pp. 561-567 
504 |a Barrett, D.M., Gonzalez, C., Activity of softening enzymes during cherry maturation (1994) Journal of Food Science, 59, pp. 574-577 
504 |a Basanta, M.F., Ponce, N.M.A., Rojas, A.M., Stortz, C.A., Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum (2012) Carbohydrate Polymers, 89, pp. 230-235 
504 |a Batisse, C., Buret, M., Coulomb, P.J., Biochemical differences in cell wall of cherry fruit between soft and crisp fruit (1996) Journal of Agricultural and Food Chemistry, 44, pp. 453-457 
504 |a Brett, C.T., Waldron, K.W., (1996) The Physiology and Biochemistry of Plant Cell Walls, , second edition Chapman & Hall London, UK pp. 26-32 
504 |a Brown, J.A., Fry, S.C., Novel O-d-galacturonyl esters in the pectic polysaccharides of suspension-cultured plant cells (1993) Plant Physiology, 103, pp. 993-999 
504 |a Brummell, D.A., Dal Cin, V., Crisosto, C.H., Labavitch, J.M., Cell wall metabolism during maturation, ripening and senescence of peach fruit (2004) Journal of Experimental Botany, 55, pp. 2029-2039 
504 |a Bunzel, M., Ralph, J., Marita, J., Stainhart, H., Identification of 4-O-5′ coupled diferulic acid from insoluble cereal fiber (2000) Journal of Agricultural and Food Chemistry, 48, pp. 3166-3169 
504 |a Cadden, A.M., Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers (1987) Journal of Food Science, 52, pp. 1595-1599 
504 |a Cameron, R.G., Luzio, G.A., Vasu, P., Savary, B.J., Williams, M.A.K., Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of pH (2011) Journal of Agricultural and Food Chemistry, 59, pp. 2717-2724 
504 |a Chanliaud, E., Burrows, K.M., Jeronimidis, G., Gidley, M.J., Mechanical properties of primary plant cell wall analogues (2002) Planta, 215, pp. 989-996 
504 |a Chantaro, P., Devahastin, S., Chiewchan, N., Production of antioxidant high dietary fiber powder from carrot peels (2008) LWT-Food Science and Technology, 41, pp. 1987-1994 
504 |a Chen, J.Y., Piva, M., Labuza, T.P., Evaluation of water binding capacity (WBC) of food fiber sources (1984) Journal of Food Science, 49, pp. 59-63 
504 |a Cittadini, E.D., (2007) Sweet Cherries from the End of the World: Options and Constraints for Fruit Production Systems in South Patagonia, Argentina, , Ph.D. thesis, Wageningen University, Holland 
504 |a De Escalada Pla, M.F., Ponce, N.M.A., Stortz, C.A., Rojas, A.M., Gerschenson, L.N., Composition and functional properties of enriched fibre products obtained from pumpkin (Cucurbita moschata, Duchesne ex Poiret) (2007) LWT-Food Science and Technology, 40, pp. 1176-1185 
504 |a Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Analytical Chemistry, 28, pp. 350-356 
504 |a Figuerola, F., Hurtado, M.L., Estévez, A.M., Chiffelle, I., Asenjo, F., Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment (2005) Food Chemistry, 91, pp. 395-401 
504 |a Filisetti-Cozzi, T.M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Analytical Biochemistry, 197, pp. 157-162 
504 |a Fils-Lycaon, B., Buret, M., Loss of firmness and changes in pectic fractions during ripening and overripening of sweet cherry (1990) HortScience, 25, pp. 777-778 
504 |a Fry, S.C., Cross-linking of matrix polymers in the growing cell walls of angiosperms (1986) Annual Review of Plant Physiology, 37, pp. 165-186 
504 |a Guillotin, S.E., Bakx, E.J., Boulenguer, P., Mazoyer, J., Schols, H.A., Voragen, A.G.J., Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities (2005) Carbohydrate Polymers, 60, pp. 391-398 
504 |a Jarvis, M.C., Plant cell walls: Supramolecular assemblies (2011) Food Hydrocolloids, 25, pp. 257-262 
504 |a Jones, L., Milne, J.L., Ashford, D., McQueen-Mason, S.J., Cell wall arabinan is essential for guard cell function (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 11783-11788 
504 |a Karadaǧ, E., Üzüm, Ö., Saraydin, D., Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels (2002) European Polymer Journal, 38, pp. 2133-2141 
504 |a Kim, C., Yoo, B., Rheological properties of rice starch-xhantan gum mixtures (2006) Journal of Food Engineering, 75, pp. 120-128 
504 |a Koh, T.H., Melton, L.D., Ripening-related changes in cell wall polysaccharides of strawberry cortical and pith tissues (2002) Postharvest Biology and Technology, 26, pp. 23-33 
504 |a Kondo, S., Danjo, C., Cell wall polysaccharide metabolism during fruit development in sweet cherry 'Satohnishhiki' as affected by gibberellic acid (2001) Journal of the Japanese Society of Horticultural Science, 70, pp. 178-184 
504 |a Lapasin, R., Pricl, S., (1995) Rheology of Industrial Polysaccharides. Theory and Applications, , Blackie Academic and Professional, Chapman & Hall Glasgow, UK pp. 85-103 
504 |a Lefebvre, J., Doublier, J.L., Rheological behavior of polysaccharides aqueous systems (2005) Polysaccharides: Structural Diversity and Functional Diversity, pp. 357-394. , S. Dumitriu, Marcel Dekker New York, USA 
504 |a Marry, M., Roberts, K., Jopson, S.J., Huxham, I.M., Jarvis, M.C., Corsar, J., Cell-cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross-links (2006) Physiologia Plantarum, 126, pp. 243-256 
504 |a Mattheis, J., Fellman, J., Cherry (Sweet) (2004) The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, , K.C. Gross, C.Y. Wang, M. Saltveit, USDA, ARS. Agriculture Handbook Number 66 Beltsville, USA 
504 |a Mittal, A., Katahira, R., Himmel, M.E., Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility (2011) Biotechnology for Biofuels, 4, pp. 41-57 
504 |a Moore, J.P., Farrant, J.M., Driouich, A., A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress (2008) Plant Signaling and Behavior, 3, pp. 102-104 
504 |a Morris, E.R., Cutler, A.N., Ross-Murphy, S.B., Rees, D.A., Price, J., Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions (1981) Carbohydrate Polymers, 1, pp. 5-21 
504 |a Morris, G.A., Ralet, M.C., Bonnin, E., Thibault, J.F., Harding, S.E., Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin (2010) Carbohydrate Polymers, 82, pp. 1161-1167 
504 |a Ng, A., Parr, A.J., Ingham, L.M., Rigby, N.M., Waldron, K.W., Cell wall chemistry of carrots (Daucus carota cv, Amstrong) during maturation and storage (1998) Journal of Agricultural and Food Chemistry, 46, pp. 2933-2939 
504 |a Peña, M.J., Carpita, N.C., Loss of highly branched arabinans and debranching of rhamnogalacturonan i accompany loss of firm texture and cell separation during prolonged storage of apples (2004) Plant Physiology, 135, pp. 1305-1313 
504 |a Pilosof, A.M., Propiedades de hidratación (2000) Caracterización Funcional y Estructural de Proteínas, pp. 17-29. , A.M. Pilosof, G.B. Bartholomai, EUDEBA Buenos Aires, Argentina 
504 |a Ponce, N.M.A., Ziegler, V.H., Stortz, C.A., Sozzi, G.O., Compositional changes in cell wall polysaccharides from Japanese plum (Prunus salicina Lindl.) during growth and on-tree ripening (2010) Journal of Agricultural and Food Chemistry, 58, pp. 2562-2570 
504 |a Raghavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., Tharanathan, R.N., Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties (2004) European Food Research and Technology, 218, pp. 563-567 
504 |a Robertson, J.A., Monredon, F.D., Dysseler, P., Guillon, F., Amadó, R., Hydration properties of dietary fiber and resistant starch: A European collaborative study (2000) LWT-Food Science and Technology, 33, pp. 72-79 
504 |a Rose, J.C., Bennett, A.B., Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: Parallels between cell expansion and fruit ripening (1999) Trends in Plant Science, 4, pp. 176-183 
504 |a Rosli, H.G., Civello, P.M., Martínez, G.A., Changes in cell wall composition of three Fragaria × ananassa cultivars with different softening rate during ripening (2004) Plant Physiology and Biochemistry, 42, pp. 823-831 
504 |a Ross-Murphy, S.B., Rheological methods (1994) Physical Techniques for the Study of Food Biopolymers, pp. 343-393. , S.B. Ross-Murphy, Blackie Academic and Professional, Chapman & Hall Glasgow, UK 
504 |a Schröder, R., Wegrzyn, T.F., Bolitho, K.M., Redgwell, R.J., Mannan transglycosylase: A novel enzyme activity in cell walls of higher plants (2004) Planta, 219, pp. 590-600 
504 |a Shui, G., Leong, L.P., Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals (2006) Food Chemistry, 97, pp. 277-284 
504 |a Toivonen, P.M.A., Brummell, D.A., Biochemical bases of appearance and texture in fresh-cut fruit and vegetables (2008) Postharvest Biology and Technology, 48, pp. 1-14 
504 |a (2011) Stone Fruit: World Markets and Trade Foreign Agricultural Services, , http://www.fas.usda.gov/htp/2011StoneFruit.pdf, USDA September 
504 |a Vetter, S., Kunzek, H., The influence of suspension solution conditions on the rehydration of apple cell wall material (2003) European Food Research and Technology, 216, pp. 39-45 
504 |a Vincken, J.P., Schols, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Physiology, 132, pp. 1781-1789 
504 |a Willats, W.G.T., Knox, J.P., Mikkelsen, D., Pectin: New insights into an old polymer are starting to gel (2006) Trends in Food Science and Technology, 17, pp. 97-104 
504 |a Wood, P.J., Siddiqui, I.R., Determination of methanol and its application for measurement of pectin ester content and pectin methyl esterase activity (1971) Analytical Biochemistry, 39, pp. 418-428 
504 |a Zsivanovits, G., MacDougall, A.J., Smith, A.C., Ring, S.G., Material properties of concentrated pectin networks (2004) Carbohydrate Research, 339, pp. 1317-1322 
520 3 |a The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. © 2012 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The help of Agr. Eng. María D. Raffo for picking up the cherries is gratefully acknowledged. This work was supported by grants from University of Buenos Aires , National Research Council of Argentina (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina (ANPCyT) . M.F.B. is a Graduate Research Fellow of CONICET, whereas M.F.E.P., C.A.S. and A.M.R. are Research Members of the same Institution. 
593 |a Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a CELL WALL BIOPOLYMERS 
690 1 0 |a FIRMNESS 
690 1 0 |a FUNCTIONAL PROPERTIES 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a RIPENING 
690 1 0 |a SWEET CHERRY 
690 1 0 |a CELL WALLS 
690 1 0 |a FIRMNESS 
690 1 0 |a FUNCTIONAL PROPERTIES 
690 1 0 |a RIPENING 
690 1 0 |a SWEET CHERRIES 
690 1 0 |a BIOPOLYMERS 
690 1 0 |a CELLULOSE 
690 1 0 |a CYTOLOGY 
690 1 0 |a GLUCOSE 
690 1 0 |a MERCURY COMPOUNDS 
690 1 0 |a POLYMERS 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a VISCOSITY 
690 1 0 |a CELLS 
690 1 0 |a CARBOHYDRATE 
690 1 0 |a CELLULOSE 
690 1 0 |a GALACTURONIC ACID 
690 1 0 |a HEXURONIC ACID 
690 1 0 |a PECTIN 
690 1 0 |a POLYMER 
690 1 0 |a POLYSACCHARIDE 
690 1 0 |a RHAMNOSE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL WALL 
690 1 0 |a CHEMISTRY 
690 1 0 |a FRUIT 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a ISOLATION AND PURIFICATION 
690 1 0 |a PRUNUS 
690 1 0 |a VISCOSITY 
690 1 0 |a CARBOHYDRATES 
690 1 0 |a CELL WALL 
690 1 0 |a CELLULOSE 
690 1 0 |a FRUIT 
690 1 0 |a HEXURONIC ACIDS 
690 1 0 |a PECTINS 
690 1 0 |a POLYMERS 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a PRUNUS 
690 1 0 |a RHAMNOSE 
690 1 0 |a VISCOSITY 
690 1 0 |a ARA 
690 1 0 |a PRUNUS AVIUM 
690 1 0 |a PSEUDOBAHIA 
700 1 |a De Escalada Plá, M.F. 
700 1 |a Stortz, C.A. 
700 1 |a Rojas, A.M. 
773 0 |d 2013  |g v. 92  |h pp. 830-841  |k n. 1  |p Carbohydr Polym  |x 01448617  |w (AR-BaUEN)CENRE-603  |t Carbohydrate Polymers 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868222690&doi=10.1016%2fj.carbpol.2012.09.091&partnerID=40&md5=5427d9534f4c48e5ddd209ac61f605bf  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.carbpol.2012.09.091  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01448617_v92_n1_p830_Basanta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v92_n1_p830_Basanta  |y Registro en la Biblioteca Digital 
961 |a paper_01448617_v92_n1_p830_Basanta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72747