Short-term analysis of the phytoplankton structure and dynamics in two ponds with distinct trophic states from Cierva Point (maritime Antarctica)

Phytoplankton communities dominating Musgos and Papúa ponds with differing trophic states were sampled over 3 days enabling the detection of the physiological and population responses of microalgae to short-scale changes in biotic and abiotic factors, rather than frequently analyzed changes in commu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Allende, L.
Otros Autores: Mataloni, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19697caa a22015857a 4500
001 PAPER-11751
003 AR-BaUEN
005 20230518204156.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84876134285 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a POBID 
100 1 |a Allende, L. 
245 1 0 |a Short-term analysis of the phytoplankton structure and dynamics in two ponds with distinct trophic states from Cierva Point (maritime Antarctica) 
260 |c 2013 
270 1 0 |m Mataloni, G.; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; email: mgmatal@yahoo.com 
506 |2 openaire  |e Política editorial 
504 |a Agawin, N.S.R., Duarte, C.M., Agustí, S., Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production (2000) Limnol Oceanogr, 45, pp. 591-600 
504 |a Allende, L., (2004) Estructura de las fracciones de fitoplancton de lagos antárticos de Bahía Esperanza con estado trófico contrastante. Variaciones estivales e interanuales, e interacciones con otros componentes planctónicos, , Dissertation, University of Buenos Aires 
504 |a Allende, L., Pizarro, H., Top-down control on plankton components in an Antarctic pond: experimental approach to the study of low-complexity food webs (2006) Polar Biol, 29, pp. 893-901 
504 |a Almada, P., Allende, L., Tell, G., Izaguirre, I., Experimental evidence of the grazing impact of Boeckella poppei on phytoplankton in a maritime Antartic lake (2004) Polar Biol, 28, pp. 39-46 
504 |a (1975) Standard Methods for the Examination of Water and Wastewaters, , APHA, Washington: APHA 
504 |a Bell, E.M., Laybourn-Parry, J., The plankton community of a young, eutrophic, Antarctic saline lake (1999) Polar Biol, 22, pp. 248-253 
504 |a Broady, P.A., The terrestrial algae of Signy Island, South Orkney Islands (1979) Br Antarc Surv Sc Rep, 98, pp. 1-117 
504 |a Butler, H., Atkinson, A., Gordon, M., Omnivory and predation impact of the calanoid copepod Boeckella poppei in a maritime Antarctic lake (2005) Polar Biol, 28, pp. 815-821 
504 |a Callieri, C., Picophytoplanton in freshwater ecosystems: the importance of small-sized phototrophs (2008) Freshw Rev, 1, pp. 1-28 
504 |a Callieri, C., Stockner, J.G., Freshwater autotrophic picoplankton: a review (2002) J Limnol, 61, pp. 1-14 
504 |a Camacho, A., Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food webs of lakes from the maritime Antarctica and sub-Antarctic islands (2006) Rev Environ Sci Biotechnol, 5, pp. 167-185. , doi:10.1007/s1115700600032 
504 |a Davey, M.C., Carbon and nitrogen dynamics in a small pond in the maritime Antarctic (1993) Hydrobiologia, 257, pp. 165-175 
504 |a Elber, F., Shanz, F., The causes of change in the diversity and stability of phytoplankton communities in small lakes (1989) Freshw Biol, 21, pp. 237-251 
504 |a Ellis-Evans, J.C., Microbial diversity and function in Antarctic freshwater ecosystems (1996) Biodivers Conserv, 5, pp. 1395-1431 
504 |a Ettl, H., Gärtner, G., (1995) Syllabus Der Boden, Luft- Und Flechtenalgen, , Stuttgart: Gustav Fischer 
504 |a González Garraza, G., Mataloni, G., Fermani, P., Vinocur, A., Ecology of algal communities of different soil types from Cierva Point, Antarctic Peninsula (2011) Polar Biol, 34 (3), pp. 339-351. , doi:10.1007/s00300-010-0887-8 
504 |a Goodman, B.J.A., A physical, chemical and biological investigation of some fresh-water pools on Signy Island, South Orkney Islands (1969) Br Antarct Surv Bull, 20, pp. 1-31 
504 |a Gotelli, N.J., Colwell, R.K., Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness (2001) Ecol Lett, 4, pp. 379-391 
504 |a Harris, G.D., (1986) Phytoplankton Ecology: Structure, Function and Fluctuation, , New York: Chapman and Hall 
504 |a Hawes, I., Eutrophication and vegetation development in maritime Antarctic lakes (1990) Antarctic Ecosystems. Ecological Change and Conservation, pp. 83-90. , K. R. Kerry and G. Hempel (Eds.), Berlin: Springer 
504 |a Hawes, I., Howard-Williams, C., Schwarz, A.-M., Downes, M.T., Environment and microbial communities in a tidal lagoon at Bratina Island, McMurdo Ice Shelf, Antarctica (1997) Antarctic Communities: Species, Structure and Survival, pp. 170-177. , B. Battaglia, J. Valencia, and D. W. H. Walton (Eds.), Cambridge: Cambridge University Press 
504 |a Hawes, I., Smith, C., Howard-Williams, C., Schwarz, A.-M., Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica (1999) Antarct Sci, 11, pp. 198-208 
504 |a Healy, M., Brown, K.L., Webster-Brown, J.G., Lane, V., Chemistry and stratification of Antarctic meltwater ponds II: inland ponds in the McMurdo Dry Valleys (Lat 77°S), Victoria Land (2006) Antarct Sci, 18, pp. 525-533 
504 |a Hillebrand, H., Dürselen, C.D.D., Kirschtel, U., Pollingher, T., Zohary, T., Biovolume calculation for pelagic and benthic microalgae (1999) J Phycol, 35, pp. 403-424 
504 |a Howard-Williams, C., Hawes, I., Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle (2007) Antarct Sci, 19, pp. 205-217 
504 |a Izaguirre, I., Pizarro, H., Ecology and taxonomy of the epilithic algal community from a stream in Cierva Point (Antarctic Peninsula) (2000) Verh Internat Verein Limnol, 27, pp. 223-229 
504 |a Izaguirre, I., Mataloni, G., Allende, L., Vinocur, A., Summer fluctuations of microbial planktonic communities in a eutrophic lake-Cierva Point, Antarctica (2001) J Plankton Res, 23, pp. 1095-1109 
504 |a Izaguirre, I., Allende, L., Marinone, C., Comparative study of the planktonic communities from lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula) (2003) J Plankton Res, 25, pp. 1079-1097 
504 |a Kemp, P.F., Sherr, B.F., Sherr, E.B., Cole, J.J., (1993) Handbook of methods in aquatic microbial ecology, , Lewis Publishers, Washington DC 
504 |a Komárek, J., Planktic oscillatorialean cyanoprokaryotes (short review according to combined phenotype and molecular aspects) (2003) Hydrobiologia, 502, pp. 367-382 
504 |a Komárek, J., Anagnostidis, K., Cyanoprokaryota 1. Teil: Chroococcales (1999) Süsswasserflora Von Mitteleuropa 19/1, , H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer (Eds.), Jena: Gustav Fischer 
504 |a Komárek, J., Anagnostidis, K., Cyanoprokaryota 2. Teil: Oscillatoriales (2005) Süsswasserflora Von Mitteleuropa 19/2, , B. Büdel, G. Gärtner, L. Krienitz, and M. Schagerl (Eds.), München: Elsevier 
504 |a Krammer, K., Lange-Bertalot, H., Bacillariophyceae 1. Teil: Naviculaceae (1986) Süsswasserflora Von Mitteleuropa 2/3, , H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (Eds.), Jena: Gustav Fischer 
504 |a Krammer, K., Lange-Bertalot, H., Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae (1991) Süsswasserflora Von Mitteleuropa 2/3, , H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (Eds.), Jena: Gustav Fischer 
504 |a Kruk, C., Segura, A.M., The habitat template of phytoplankton morphology-basedfunctional groups (2012) Hydrobiologia, 698, pp. 191-202. , doi:101007/s1075001210726 
504 |a Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C.S., Scheffer, M., A morphological classification capturing functional variation in phytoplankton (2010) Freshw Biol, 55, pp. 614-627 
504 |a Laybourn-Parry, J., Ellis-Evans, J.C., Butler, H., Microbial dynamics during the summer ice-loss phase in maritime Antarctic lakes (1996) J Plankton Res, 18, pp. 495-511 
504 |a Lizotte, M.P., Phytoplankton and primary production (2008) Polar Lakes and Rivers, , W. F. Vincent and J. Laybourn-Parry (Eds.), Oxford: Oxford University Press 
504 |a Marker, A.F.H., Nusch, A., Rai, H., Riemann, B., The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations (1980) Arch Hydrobiol Beih Ergebn Limnol, 14, pp. 91-106 
504 |a Mataloni, G., Komárek, J., Gloeocapsopsis aurea, a new subaerophytic cyanobacterium from Maritime Antarctica (2004) Polar Biol, 27, pp. 623-628 
504 |a Mataloni, G., Pose, M., Non-marine algae from islands near Cierva Point, Antarctic Peninsula (2001) Cryptogam Algologie, 22, pp. 41-64 
504 |a Mataloni, G., Tell, G., Microalgal communities from ornithogenic soils at Cierva Point, Antarctic Peninsula (2002) Polar Biol, 25, pp. 488-491 
504 |a Mataloni, G., Tesolín, G., A preliminary survey of cryobiontic algal communities from Cierva Point (Antarctic Peninsula) (1997) Antarct Sci, 9, pp. 250-258 
504 |a Mataloni, G., Vélez, C.G., Vitreochlamys primaverae (Volvocales, Chlorophyceae): a new green flagellate from the Antarctic Peninsula (2009) Arch Hydrobiol Suppl Algol Stud, 131, pp. 1-14 
504 |a Mataloni, G., Tesolín, G., Tell, G., Characterization of a small eutrophic Antarctic lake (Otero Lake, Cierva Point) on the basis of algal assemblages and water chemistry (1998) Polar Biol, 19, pp. 107-114 
504 |a Mataloni, G., Tell, G., Wynn-Williams, D., Structure and diversity of soil colonizing algal communities from Cierva Point (Antarctic Peninsula) (2000) Polar Biol, 23, pp. 205-211 
504 |a Mataloni, G., Tesolín, G., Sacullo, F., Tell, G., Factors regulating summer phytoplankton in a highly eutrophic Antarctic lake (2000) Hydrobiologia, 432, pp. 65-72 
504 |a Mataloni, G., Vinocur, A., de Tezanos Pinto, P., Abiotic characterization and phycoepilithic community of heavily enriched Pingüinera stream (Cierva Point, Antarctic Peninsula) (2005) Antarct Sci, 17, pp. 163-170 
504 |a Mataloni, G., González Garraza, G., Bölter, M., Convey, P., Fermani, P., What shapes edaphic communities in mineral and ornithogenic soils of Cierva Point, Antarctic Peninsula? (2010) Polar Sci, 4, pp. 405-419 
504 |a Nozaki, H., Ohtani, S., Gonium sociale (Volvocales, Chlorophyta) from Antarctica (1992) Jpn J Phycol (Sôrui), 40, pp. 267-271 
504 |a Pizarro, H.N., Allende, L., Bonaventura, S., Littoral epilithon of lentic water bodies at Hope Bay, Antarctica: biomass variables in relation to environmental conditions (2004) Hydrobiologia, 529, pp. 237-250 
504 |a Reynods, C.S., Scales of disturbance and their role in plankton ecology (1993) Hydrobiologia, 249, pp. 157-171 
504 |a Reynolds, C.S., Functional morphology and the adaptive strategies of freshwater phytoplankton (1988) Growth and Reproductive Strategies of Freshwater Phytoplankton, pp. 388-433. , C. D. Sandgren (Ed.), Cambridge: Cambridge University Press 
504 |a Rochera, C., Villaescusa, J.A., Diazmacip, M.E., Gil-Delgado, J.A., Toro, M., Rico, E., Velázquez, D., Camacho, A., Interacciones bióticas en lagos Antárticos. Investigaciones derivadas del proyecto LIMNOPOLAR en la Península Byers (Antártida marítima) (2011) Ecosistemas, 20, pp. 23-32 
504 |a Silvoso, J., Izaguirre, I., Allende, L., Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study (2011) Limnologica, 41, pp. 181-190 
504 |a Sommaruga, R., Robarts, R.D., The significance of autotrophic and heterotrophic picoplankton in hypereutrophic ecosystems (1997) FEMS Microbiol Ecol, 24, pp. 187-200 
504 |a Spurr, B., Limnology of Bird pond, Ross Island, Antarctica (1975) N Z J Mar Freshwater Res, 9, pp. 547-562 
504 |a Stockner, J.G., Callieri, C., Cronberg, G., Picoplankton and other non-bloom-forming Cyanobacteria in lakes (2000) The Ecology of Cyanobacteria, pp. 195-231. , B. A. Whitton and M. Potts (Eds.), Dordrecht: Kluwer Academic Publishers 
504 |a Sun, J., Liu, D., Geometric models for calculating cell biovolume and surface area for phytoplankton (2003) J Plankton Res, 25, pp. 1331-1346 
504 |a Taton, A., Grubisic, S., Brambilla, E., de Wit, R., Wilmotte, A., Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach (2003) Appl Environ Microbiol, 69, pp. 5157-5169 
504 |a Tesolín, G., Mataloni, G., Tell, G., Preliminary survey of the algal communities from lentic microlimnotopes of Cierva Point (Antarctic Peninsula) (1997) IV Jornadas de Comunicaciones sobre Investigaciones Antárticas, , In: DNA-IAA (ed), Buenos Aires 
504 |a Utermöhl, H., Zur Vervollkommnung der quantitativen Phytoplankton Methodik (1958) Mitt Int Ver Limnol, 9, pp. 1-38 
504 |a van de Vijver, B., Frenot, Y., Beyens, L., Freshwater diatoms from Ile de la Possession (Crozet archipelago, Subantarctica) (2002) Biblioth Diatomol, 46, pp. 1-412 
504 |a van der Werff, A., A new method for cleaning and concentrating diatoms and other organisms (1955) Int Ver Theor Angew Limnol Verh, 12, pp. 276-277 
504 |a Venrick, E.L., How many cells to count? (1978) Phytoplankton Manual, pp. 167-180. , A. Sourniavon (Ed.), Paris: Unesco 
504 |a Vincent, W.F., Evolutionary origins of Antarctic microbiota: invasion, selection and endemism (2000) Antarct Sci, 12, pp. 374-385 
504 |a Vincent, W.F., Castenholz, R.W., Downes, M.T., Howard-Williams, C., Antarctic Cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment (1993) J Phycol, 29, pp. 745-755 
504 |a Vinocur, A., Unrein, F., Typology of lentic water bodies at Potter Peninsula (King George Island, Antartica) based on physical-chemical characteristics and phytoplankton communities (2000) Polar Biol, 23, pp. 858-870 
504 |a Vörös, I., Callieri, C., Balogh, K.V., Bertoni, R., Freshwater picocyanobacteria along a trophic gradient and light quality range (1998) Hydrobiologia, 369 (370), pp. 117-125 
504 |a Wait, B.R., Webster-Brown, J.G., Brown, K.L., Healy, M., Hawes, I., Chemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf (2006) Antarct Sci, 18, pp. 515-524 
504 |a Wynn-Williams, D.D., (1992) Direct Quantification of Microbial Propagules and Spores. Biotas Manual of Methods, , Cambridge: Scientific Committee on Antarctic Research 
504 |a Zingel, P., Agasid, H., Noges, T., Kisand, V., Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake (2007) Microb Ecol, 53, pp. 134-142 
520 3 |a Phytoplankton communities dominating Musgos and Papúa ponds with differing trophic states were sampled over 3 days enabling the detection of the physiological and population responses of microalgae to short-scale changes in biotic and abiotic factors, rather than frequently analyzed changes in community composition responses to long-scale environmental changes. We hypothesized that both environments undergoing diel changes would be dominated by phytoplankton with generalist strategies, while community structure would be mostly dictated by the trophic state of each water body. The phytoplankton biovolumes of both ponds were strongly dominated by euplanktonic nanoflagellated Chlorophyta, while phycocyanin-rich picocyanobacteria dominated the picophytoplankton. Parallel diel cycles of air and water temperatures were more pronounced on a sunny, warm day which prompted algal photosynthesis, revealed by strong increases in dissolved oxygen and pH. Nutrient and phytoplanktonic chlorophyll a confirmed the hypertrophic condition of Papúa pond. This accounted for the distinct community composition encountered in each pond, which remained stable throughout the study, as revealed by the SIMI index. The inverse relationship between the chl a/abundance ratio and the abundances of dominant species together with varying net growth rates (k′) showed algal reproduction, yet densities remained rather stable in both cases. In Musgos pond, fluctuations in k′ for small and median ciliates shadowed those of pico- and nanophytoplankton, respectively, strongly suggesting that they can control algal growth in these 2-level trophic chains. © 2013 Springer-Verlag Berlin Heidelberg.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Instituto Antártico Argentino, PIP 5356, UBACYT X864 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Acknowledgments This research has been supported by the University of Buenos Aires, CONICET and the Instituto Antártico Argentino through research grants PIP 5356 and UBACYT X864 and contributes to the SCAR EBA research programme. The authors are grateful for the logistic support of the Base Antártica Primavera staff. Dr. Fernando Unrein kindly shared with us unpublished data on picophytoplankton biovolume. Comments from Drs. Clive Howard-Williams, María E. Llames and anonymous referees greatly helped to strengthen the original draft. 
593 |a Laboratorio de Limnologia, Instituto de Ecologia Genetica y Evolucion de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina 
593 |a Laboratorio de Biodiversidad, Limnología y Ecología de la Conservación, Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín, Buenos Aires, Argentina 
690 1 0 |a MARITIME ANTARCTICA 
690 1 0 |a PHYTOPLANKTON STRUCTURE 
690 1 0 |a PONDS 
690 1 0 |a SHORT-TERM STUDY 
690 1 0 |a CHLOROPHYLL A 
690 1 0 |a COMMUNITY DYNAMICS 
690 1 0 |a COMMUNITY STRUCTURE 
690 1 0 |a CYANOBACTERIUM 
690 1 0 |a DEVELOPMENTAL BIOLOGY 
690 1 0 |a DOMINANCE 
690 1 0 |a ENVIRONMENTAL CHANGE 
690 1 0 |a ENVIRONMENTAL FACTOR 
690 1 0 |a FLAGELLATE 
690 1 0 |a GROWTH RATE 
690 1 0 |a MICROALGA 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PHYTOPLANKTON 
690 1 0 |a POND 
690 1 0 |a REPRODUCTION 
690 1 0 |a TROPHIC LEVEL 
690 1 0 |a WATER TEMPERATURE 
690 1 0 |a ANTARCTICA 
690 1 0 |a CIERVA POINT 
690 1 0 |a WEST ANTARCTICA 
690 1 0 |a ALGAE 
690 1 0 |a CHLOROPHYTA 
690 1 0 |a CILIOPHORA 
700 1 |a Mataloni, G. 
773 0 |d 2013  |g v. 36  |h pp. 629-644  |k n. 5  |p Polar Biol.  |x 07224060  |t Polar Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876134285&doi=10.1007%2fs00300-013-1290-z&partnerID=40&md5=02cca08650185613c6fbc0557c364822  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00300-013-1290-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07224060_v36_n5_p629_Allende  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07224060_v36_n5_p629_Allende  |y Registro en la Biblioteca Digital 
961 |a paper_07224060_v36_n5_p629_Allende  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72704