Robust location estimation with missing data

In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at ran...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sued, M.
Otros Autores: Yohai, V.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07084caa a22006377a 4500
001 PAPER-11727
003 AR-BaUEN
005 20230518204154.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84873995042 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sued, M. 
245 1 0 |a Robust location estimation with missing data 
260 |c 2013 
270 1 0 |m Sued, M.; Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires and CONICET, Buenos Aires, Argentina; email: msued@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bang, H., Robins, J., Doubly robust estimation in missing data and causal inference models (2005) Biometrics, 61, pp. 962-972 
504 |a Bianco, A., Boente, G., González-Manteiga, W., Pérez-González, A., Estimation of the marginal location under a partially linear model with missing responses (2010) Computational Statistics and Data Analysis, 54, pp. 546-564 
504 |a Boente, G., Rodriguez, D., Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis (2008) Computational Statistics and Data Analysis, 52, pp. 2808-2828 
504 |a Boente, G., González-Manteiga, W., Pérez-González, A., Robust nonparametric estimation with missing data (2009) Journal of Statistical Planning and Inference, 139, pp. 571-592 
504 |a Dehejia, R.H., Wahba, S., Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs (1999) Journal of the American Statistical Association, 94, pp. 1053-1062 
504 |a Donoho, D.L., Huber, P.J., The notion of breakdown point (1983) A Festschrift for E. L. Lehmann, pp. 157-184. , Bickel, P. J., Doksum, K. A., & Hodges, J. L., editors. Wadsworth, Belmont, CA 
504 |a Fasano, M.V., (2009), http://www.mate.unlp.edu.ar/tesis/tesis_fasano_v.pdf, Robust estimation in nonlinear regression. Ph.D. Thesis, University of La Plata. Available at; Fasano, M.V., Maronna, R.A., Sued, M., Yohai, V.J., Continuity and differentiability of regression M functionals (2011) Bernoulli, , in press) 
504 |a Hampel, F.R., The influence curve and its role in robust estimation (1974) Journal of the American Statistical Association, 69, pp. 383-393 
504 |a Hössjer, O., On the optimality of S-estimators (1992) Statistics and Probability Letters, 14, pp. 413-419 
504 |a Huber, P.J., Robust estimation of a location parameter (1964) The Annals of Mathematical Statistics, 35, pp. 73-101 
504 |a Huber, P.J., Ronchetti, E.M., (2009) Robust Statistics, , 2nd ed., Wiley, New York 
504 |a Hubert, M., Engelen, S., Fast cross-validation of high-breakdown resampling algorithms for PCA (2007) Computational Statistics and Data Analysis, 51, pp. 5013-5024 
504 |a Kang, J.D.Y., Schafer, J.L., Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (2007) Statistical Science, 22, pp. 523-539 
504 |a Khan, J.A., Van Aelst, S., Zamar, R.H., Robust linear model selection based on least angle regression (2007) Journal of the American Statistical Association, 102, pp. 1289-1299 
504 |a LaLonde, R.J., Evaluating the econometric evaluations of training programs with experimental data (1986) American Economic Review, 76, pp. 604-620 
504 |a Maronna, R.A., Martin, R.D., Yohai, V.J., (2006) Robust Statistics: Theory and Methods, , Wiley, Chichester 
504 |a Müler, U.U., Estimating linear functionals in nonlinear regression with responses missing at random (2009) Annals of Statistics, 37, pp. 2245-2277 
504 |a Robins, J., Sued, M., Lei-Gomez, Q., Rotnitzky, A., Comment: Performance of double-robust estimators when inverse probability weights are highly variable (2007) Statistical Science, 22, pp. 544-559 
504 |a Ronchetti, E., Field, R., Blanchard, W., Robust linear model selection by cross-validation (1997) Journal of the American Statistical Association, 92, pp. 1017-1023 
504 |a Ronchetti, E., Staudte, R.G., A robust version of Mallows's Cp (1994) Journal of the American Statistical Association, 89, pp. 550-559 
504 |a Rousseeuw, P.J., Yohai, V.J., Robust regression by means of S-estimators (1984) Robust and Nonlinear Time Series, 26, pp. 256-272. , Franke, J., Hardle, W., & Martin, R. D., editors. Lecture Notes in Statistics, Springer, New York 
504 |a Rubin, D., Inference and missing data (1976) Biometrika, 63, pp. 581-592 
504 |a Yohai, V.J., High breakdown-point and high efficiency estimates for regression (1987) The Annals of Statistics, 15, pp. 642-656 
520 3 |a In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response's distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online. © 2012 Statistical Society of Canada.  |l eng 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires and CONICET, Buenos Aires, Argentina 
593 |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires and CONICET, Buenos Aires, Argentina 
690 1 0 |a ASYMPTOTIC DISTRIBUTION 
690 1 0 |a BREAKDOWN POINT 
690 1 0 |a L-LOCATION FUNCTIONAL 
690 1 0 |a M-LOCATION FUNCTIONAL 
690 1 0 |a MEDIAN 
690 1 0 |a MISSING AT RANDOM 
700 1 |a Yohai, V.J. 
773 0 |d 2013  |g v. 41  |h pp. 111-132  |k n. 1  |p Can. J. Stat.  |x 03195724  |t Canadian Journal of Statistics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873995042&doi=10.1002%2fcjs.11163&partnerID=40&md5=e7e2e717264341e47bb47533094c4b5e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/cjs.11163  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03195724_v41_n1_p111_Sued  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03195724_v41_n1_p111_Sued  |y Registro en la Biblioteca Digital 
961 |a paper_03195724_v41_n1_p111_Sued  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion