Modeling the complex hatching and development of Aedes aegypti in temperate climates

Here, we present and discuss a compartmental stochastic model for Aedes aegypti conceived as a mathematical structure able to interpolate and extrapolate (predict) biological phenomena, and direct the attention to biological matters that need experimental elucidation. The model incorporates weather...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Romeo Aznar, V.
Otros Autores: Otero, M., De Majo, M.S, Fischer, S., Solari, H.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18378caa a22016817a 4500
001 PAPER-11706
003 AR-BaUEN
005 20230518204153.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84873910223 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ECMOD 
100 1 |a Romeo Aznar, V. 
245 1 0 |a Modeling the complex hatching and development of Aedes aegypti in temperate climates 
260 |c 2013 
270 1 0 |m Romeo Aznar, V.; Departamento de Física, FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina; email: vromeoaznar@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Barrera, R., Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes (1996) Ecological Entomology, 21 (1), pp. 17-127 
504 |a Bergero, P., Ruggerio, C., Lombardo, R., Schweigmann, N., Solari, H., Dispersal of Aedes aegypti: field study in temperate areas and statistical approach (2011), Preprint available from the authors; Carbajo, A.E., Distribución espacio-temporal de Aedes aegypti (Diptera: Culicidae): su relación con el ambiente urbano y el riesgo de transmisión del virus dengue en la Ciudad de Buenos Aires (2003) Ph.D. thesis, , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, director: Susana I Curto 
504 |a Carbajo, A.E., Curto, S.I., Schweigmann, N., Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector (2006) Medical and Veterinary Entomology, 20, pp. 209-218 
504 |a Chadee, D.D., Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002-2006) (2009) Acta Tropica, 111, pp. 279-283 
504 |a Christophers, R., (1960) Aedes aegypti (L.) the yellow fever mosquito, , Cambridge University Press, Cambridge 
504 |a Craig, G.B., Vandehey, R.C., Hickey, W.A., Genetic variability in populations of Aedes aegypti (1961) Bulletin of the World Health Organization, 24, pp. 527-539 
504 |a De Majo, M.S., Asociación de la temperatura y de la mortalidad invernal de los huevos con la dinámica poblacional de Aedes aegypti en Buenos Aires (2011) Master's thesis, , Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos 
504 |a Durrett, R., (2001) Essentials of Stochastic Processes, , Springer Verlag, New York 
504 |a Dégallier, P.N., Hervé, J.P., Rosa, A.F.A.T.D., Sa, G.C., Aedes aegypti (L.): importance de sa bioécologie dans la transmission de la dengue et des autres arbobirus (1988) Bulletin de la Societe de Pathologie Exotique, 81, pp. 97-110 
504 |a Edgerly, J.S., Marvier, M.A., To hatch or not to hatch? egg hatch response to larval density and to larval contact in a treehole mosquito (1992) Ecological Entomology, 17, pp. 28-32 
504 |a Edgerly, J.S., Willey, M.S., Livdhal, T.P., The community ecology of Aedes egg hatching: implications for mosquito invasion (1993) Ecological Entomology, 18, pp. 123-128 
504 |a Ellis, A.M., Garcia, A.J., Focks, D.A., Morrison, A.C., Scott, T.W., Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control (2011) American Journal of Tropical Medicine and Hygiene, 85, pp. 257-264 
504 |a Estallo, E.L., Ludueña-Almeida, F.F., Visintin, A.M., Scavuzzo, C.M., Introini, M.V., Zaidenberg, M., Almirón, W.R., Prevention of dengue outbreaks through Aedes aegypti oviposition activity forecasting method (2011) Vector-Borne and Zoonotic Diseases, 11, pp. 543-549 
504 |a Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York 
504 |a Feller, W., On the integro-differential equations of purely discontinuous Markoff processes (1940) Transactions of the American Mathematical Society, 48, pp. 488-515 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results (1995) American Journal of Tropical Medicine and Hygiene, 53, pp. 489-505 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: analysis of the literature and model development (1993) Journal of Medical Entomology, 30, pp. 1003-1018 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for Aedes aegypti: simulations results (1993) Journal of Medical Entomology, 30, pp. 1019-1029 
504 |a García, R., Sistemas Complejos (2006), Conceptos, métodos, y fundamentación epistemológica de la investigación interdisciplinaria, Gedisa, Barcelona, Spain; Gillett, J.D., The inherited basis of variation in he hatching response of Aedes eggs (Diptera: Culicidae) (1955) Bulletin of the World Health Organization, 46, pp. 255-265 
504 |a Gillett, J.D., Variation in the hatching-response of Aedes eggs (Diptera: Culicidae) (1955) Bulletin of the World Health Organization, 46, pp. 241-255 
504 |a Gillett, J.D., Roman, E.A., Phillips, V., Erratic hatching in Aedes eggs: a new interpretation (1977) Proceedings of the Royal Society London B, 196, pp. 223-232 
504 |a Grech, M.G., Ludueña-Almeida, F., Almirón, W.R., Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Argentina (2010) Journal of Vector Ecology, 35, pp. 277-285 
504 |a Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clinical Microbiology Review, 11, pp. 480-496 
504 |a Hartmann, S., Models as a tool for theory construction: some strategies of preliminary physics (1995) Theories and Models in Scientific Processes: Proceedings of AFOS '94, vol. 44, pp. 49-67. , Poznarí Studies in Phylosophy and Humanities, W.E. Herfel (Ed.) 
504 |a Kearney, M., Porter, W.P., Williams, C., Ritchie, S., Hoffmann, A.A., Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia (2009) Functional Ecology, 23, pp. 528-538 
504 |a Kendall, D.G., An artificial realization of a simple " birth-and-death" process (1950) Journal of the Royal Statistical Society, Series B: Statistical Methodology, 12, pp. 116-119 
504 |a Kolmogoroff, A., Über die analytischen methoden in der wahrscheinlichkeitsrechnung (1931) Mathematische Annalen, 104, pp. 415-458 
504 |a Kurtz, T.G., Solutions of ordinary differential equations as limits of pure jump Markov processes (1970) Journal of Applied Probability, 7, pp. 49-58 
504 |a Lakatos, I., (1978) Mathematics, Science and Epistemology, , Cambridge University Press, Cambridge, UK 
504 |a Lande, R., Natural selection and random genetic drift in phenotypic evolution (1976) Evolution, 30, pp. 314-334 
504 |a Lee, H.L., Jokob, H., Naznia, W.A., Vasanc, S.S., Comparative life parameters of transgenic and wild strain of Aedes aegypti in the laboratory (2009) Dengue Bulletin, 33, pp. 103-144 
504 |a Legros, M., Magori, K., Morrison, A.C., Xu, C., Scott, T.W., Lloyd, A.L., Gould, F., Evaluation of location-specific predictions by a detailed simulation model of Aedes aegypti populations (2011) PLoS ONE, 6, pp. e22701 
504 |a Livdahl, T.P., Edgerly, J.S., Egg hatching inhibition: field evidence for population regulation in a treehole mosquito (1987) Ecological Entomology, 12, pp. 395-399 
504 |a Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., The complex hatching response of Aedes eggs to larval density (1984) Ecological Entomology, 9, pp. 437-442 
504 |a Maciá, A., Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina (2006) Journal of Vector Ecology, 31, pp. 371-377 
504 |a Maciá, A., Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae) (2009) Revista de la Sociedad Entomológica Argentina, 68, pp. 107-114 
504 |a Magori, K., Legros, M., Puente, M.E., Focks, D.A., Scott, T.W., Lloyd, A.L., Gould, F., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies (2009) PLOS Neglected Tropical Diseases, 3, pp. e508 
504 |a Merritt, R.W., Dadd, R.H., Walker, E.D., Feeding behavior, natural food, and nutritional relationships of larval mosquitoes (1992) Annual Review of Entomology, 37, pp. 349-376 
504 |a Micieli, M.V., Campos, R.E., Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in subtropical Argentina (2003) Memorias do Instituto Oswaldo Cruz, 98, pp. 659-663 
504 |a Moore, C.G., Whitacre, C.H., Competition in mosquitoes. 2. Production of Aedes aegypti larval growth retardant at various densities and nutritional levels (1972) Annals of the Entomological Society of America, 65, pp. 915-918 
504 |a Morrison, A.C., Gray, K., Getis, A., Astete, H., Sihuincha, M., Focks, D., Watts, D., Scott, T.W., Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in iquitos, peru (2004) Journal of Medical Entomology, 41, pp. 1123-1142 
504 |a Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A., Modeling dengue outbreaks (2011) Mathematical Biosciences, 232, pp. 87-95 
504 |a Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bulletin of Mathematical Biology, 70, pp. 1297-1325 
504 |a Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Mathematical Biosciences, 223, pp. 32-46 
504 |a Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: formulation and application to a city with temperate climate (2006) Bulletin of Mathematical Biology, 68, pp. 1945-1974 
504 |a Ponnusamy, L., Böröczky, K., Wesson, D.M., Schal, C., Apperson, C.S., Bacteria stimulate hatching of yellow fever mosquito eggs (2011) PLoS ONE, 6, pp. e24409 
504 |a Robertson, F.W., The ecological genetics of growth in Drosophila. 1. Body size and developmental time on different diets (1960) Genetic Research, 1, pp. 288-304 
504 |a Robertson, F.W., The ecological genetics of growth in Drosophila. 8. Adaptation to a new diet (1966) Genetic Research, 8, pp. 165-179 
504 |a Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) (1990) Journal of Medical Entomology, 27, pp. 892-898 
504 |a Schweigmann, N., Orellano, P., Kuruc, J., Vera, M.T., Vezzani, D., Méndez, A., Distribución y abundancia de Aedes aegypti (Diptera: Culicidae) en la ciudad de Buenos Aires (2002) Actualizaciones en Artropodologí a Sanitaria Argentina, pp. 155-160. , Revista Sociedad Entomológica Argentina. Fundación Mundo Sano, D.S. Salomón (Ed.) 
504 |a Seijo, A., Romer, Y., Espinosa, M., Monroig, J., Giamperetti, S., Ameri, D., Antonelli, L., Brote de dengue autóctono en el area metropolitana Buenos Aires. experiencia del Hospital de enfermedades infecciosas F. J. Muñiz (2009) Medicina, 69, pp. 593-600 
504 |a Solari, H.G., Natiello, M.A., Stochastic population dynamics: the Poisson approximation (2003) Physical Review E, 67, p. 031918 
504 |a Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of Aedes aegypti in Wat Samphaya Bangkok Thailand (1972) Bulletin of the World Health Organization, 46, pp. 211-226 
504 |a Stearns, S.C., The evolutionary significance of phenotypic plasticity (1989) BioScience, 39, pp. 436-445 
504 |a Tejerina, E.F., Almeida, F.F.L., Almirón, W.R., Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones province, northeastern Argentina (2009) Acta Tropica, 109, pp. 45-49 
504 |a Vezzani, C., Velázquez, S.T., Schweigmann, N., Seasonal pattern of abundance of Aedes aegypti (Diptera: Culicidae) in Buenos Aires city, Argentina (2004) Memorias do Instituto Oswaldo Cruz, 99, pp. 351-356 
504 |a Xu, C., Legros, M., Gould, F., Lloyd, A.L., Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics (2010) PLOS Neglected Tropical Diseases, 4 (9), pp. e830 
504 |a Zwietering, M.H., de Koos, J.T., Hasenack, B.E., de Witt, J.C., van't Riet, K., Modeling of bacterial growth as a function of temperature (1991) Applied and Environment Microbiology, 57, pp. 1094-1101 
520 3 |a Here, we present and discuss a compartmental stochastic model for Aedes aegypti conceived as a mathematical structure able to interpolate and extrapolate (predict) biological phenomena, and direct the attention to biological matters that need experimental elucidation. The model incorporates weather information in the form of daily temperatures and rain and pays particular attention to determining factors in temperate climates. Sufficiently large rains trigger egg hatching, which in turn leads to peaks in larval densities. Hatching is inhibited by the absence of bacteria (Gillett effect), a mechanism of relevance during the winter season and in seasons with isolated rains. The model also incorporates egg hatching independent of rains. Both egg hatching and larval development depend on the availability of food, which is modeled as bacteria produced at rates that depend on the temperature. Larval mortality and pupation rates depend on the larvae to bacteria ratio. The results of the model for egg laying activity were compared with field records during a normal season and a drought. Both the model and the records indicate that the egg laying activity of Ae. aegypti is not zero during the drought and recovers quickly when normal weather is reestablished. We studied the sensitivity of the model to different sets of physiological parameters published for a few different local populations of this species, and found that there is an important sensitivity to local characteristics that will affect some predictions of the model. We emphasize that if the information is going to be used to evaluate control methods, the life cycle of the mosquito must be studied for the local strain under the local environmental conditions (including food). We showed that the adult populations produced by the model are insensitive to certain combinations of parameters and that this insensitivity is related to the variability reported for different strains obtained from closely located places. When the model is considered in a larger biological context, it indicates that some standard procedures performed to measure the life cycle of Ae. aegypti in the laboratory might have a determining influence in the results. © 2013 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X210, 20020090200142, 20020100100734 
536 |a Detalles de la financiación: We acknowledge the support of the University of Buenos Aires (Argentina) through grants X210 , 20020100100734 , and 20020090200142 . Appendix A 
593 |a Departamento de Física, FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina 
593 |a Departamento de Ecología Genética y Evolución, FCEN-UBA, IEGEBA-CONICET, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina 
690 1 0 |a BACTERIA 
690 1 0 |a FOOD 
690 1 0 |a LOCAL STRAINS 
690 1 0 |a RAIN 
690 1 0 |a STOCHASTIC MODEL 
690 1 0 |a TEMPERATURE 
690 1 0 |a ADULT POPULATIONS 
690 1 0 |a AEDES AEGYPTI 
690 1 0 |a BIOLOGICAL MATTER 
690 1 0 |a BIOLOGICAL PHENOMENA 
690 1 0 |a CONTROL METHODS 
690 1 0 |a DAILY TEMPERATURES 
690 1 0 |a EGG HATCHING 
690 1 0 |a ENVIRONMENTAL CONDITIONS 
690 1 0 |a FIELD RECORD 
690 1 0 |a LARVAL DENSITY 
690 1 0 |a LARVAL DEVELOPMENT 
690 1 0 |a LOCAL CHARACTERISTICS 
690 1 0 |a LOCAL POPULATIONS 
690 1 0 |a LOCAL STRAINS 
690 1 0 |a MATHEMATICAL STRUCTURE 
690 1 0 |a PHYSIOLOGICAL PARAMETERS 
690 1 0 |a STANDARD PROCEDURES 
690 1 0 |a TEMPERATE CLIMATE 
690 1 0 |a WEATHER INFORMATION 
690 1 0 |a WINTER SEASONS 
690 1 0 |a BACTERIA 
690 1 0 |a CLIMATOLOGY 
690 1 0 |a DROUGHT 
690 1 0 |a FOOD PRODUCTS 
690 1 0 |a RAIN 
690 1 0 |a STOCHASTIC MODELS 
690 1 0 |a STRAIN 
690 1 0 |a TEMPERATURE 
690 1 0 |a PHYSIOLOGICAL MODELS 
690 1 0 |a BACTERIUM 
690 1 0 |a DROUGHT 
690 1 0 |a ENVIRONMENTAL CONDITIONS 
690 1 0 |a FOOD AVAILABILITY 
690 1 0 |a HATCHING 
690 1 0 |a INHIBITION 
690 1 0 |a LARVA 
690 1 0 |a MORTALITY 
690 1 0 |a MOSQUITO 
690 1 0 |a PHYSIOLOGICAL RESPONSE 
690 1 0 |a PUPATION 
690 1 0 |a RAINFALL 
690 1 0 |a STOCHASTICITY 
690 1 0 |a TEMPERATE ENVIRONMENT 
690 1 0 |a TEMPERATURE EFFECT 
690 1 0 |a WINTER 
700 1 |a Otero, M. 
700 1 |a De Majo, M.S. 
700 1 |a Fischer, S. 
700 1 |a Solari, H.G. 
773 0 |d 2013  |g v. 253  |h pp. 44-55  |p Ecol. Model.  |x 03043800  |w (AR-BaUEN)CENRE-4466  |t Ecological Modelling 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873910223&doi=10.1016%2fj.ecolmodel.2012.12.004&partnerID=40&md5=3c0bd9b0351ac5c1bb741ae06297ee69  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ecolmodel.2012.12.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03043800_v253_n_p44_RomeoAznar  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043800_v253_n_p44_RomeoAznar  |y Registro en la Biblioteca Digital 
961 |a paper_03043800_v253_n_p44_RomeoAznar  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72659