Hsp90-binding immunophilins as a potential new platform for drug treatment

Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in ba...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Erlejman, A.G
Otros Autores: Lagadari, M., Galigniana, M.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 27048caa a22022697a 4500
001 PAPER-11644
003 AR-BaUEN
005 20230607131858.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84876132812 
024 7 |2 cas  |a alisporivir, 254435-95-5; cyclosporin A, 59865-13-3, 63798-73-2; rapamycin, 53123-88-9; tacrolimus, 104987-11-3; HSP90 Heat-Shock Proteins; Immunophilins, 5.2.1.8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Erlejman, A.G. 
245 1 0 |a Hsp90-binding immunophilins as a potential new platform for drug treatment 
260 |c 2013 
270 1 0 |m Galigniana, M.D.; Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina; email: mgali@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., FKBP family proteins: Immunophilins with versatile biological functions (2008) Neurosignals, 16 (4), pp. 318-325 
504 |a Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol, 21 (2), pp. 91-103 
504 |a Callebaut, I., Renoir, J.M., Lebeau, M.C., An immunophilin that binds M(r) 90,000 heat shock protein: Main structural features of a mammalian p59 protein (1992) Proc. Natl Acad. Sci. USA, 89 (14), pp. 6270-6274 
504 |a Smith, D.F., Tetratricopeptide repeat cochaperones in steroid receptor complexes (2004) Cell Stress Chaperones, 9 (2), pp. 109-121 
504 |a Aviezer-Hagai, K., Skovorodnikova, J., Galigniana, M., Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90 (2007) Plant Mol. Biol., 63 (2), pp. 237-255 
504 |a Sumanasekera, W.K., Tien, E.S., Turpey, R., Vanden Heuvel, J.P., Perdew, G.H., Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90 kDa heat shock protein and the hepatitis virus B X-associated protein 2 (2003) J. Biol. Chem., 278 (7), pp. 4467-4473 
504 |a Edlich, F., Lucke, C., From cell death to viral replication: The diverse functions of the membrane-associated FKBP38 (2011) Curr. Opin. Pharmacol., 11 (4), pp. 348-353 
504 |a Crackower, M.A., Kolas, N.K., Noguchi, J., Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis (2003) Science, 300 (5623), pp. 1291-1295 
504 |a Jarczowski, F., Jahreis, G., Erdmann, F., Schierhorn, A., Fischer, G., Edlich, F., FKBP36 is an inherent multifunctional glyceraldehyde- 3-phosphate dehydrogenase inhibitor (2009) J. Biol. Chem., 284 (2), pp. 766-773 
504 |a Lu, K.P., Zhou, X.Z., The prolyl isomerase PIN1: A pivotal new twist in phosphorylation signaling and disease (2007) Nat. Rev. Mol. Cell Biol., 8 (11), pp. 904-916 
504 |a Lee, T.H., Pastorino, L., Lu, K.P., Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease (2011) Expert Rev. Mol. Med., 13, pp. e21 
504 |a Dong, L., Marakovits, J., Hou, X., Structure-based design of novel human Pin1 inhibitors (II (2010) Bioorg. Med. Chem. Lett., 20 (7), pp. 2210-2214 
504 |a Liu, C., Jin, J., Chen, L., Synthesis and biological evaluation of novel human Pin1 inhibitors with benzophenone skeleton (2012) Bioorg. Med. Chem., 20 (9), pp. 2992-2999 
504 |a Schiene-Fischer, C., Aumuller, T., Fischer, G., Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins (2013) Curr. Top. Chem., 328, pp. 35-67 
504 |a Barik, S., Immunophilins: For the love of proteins (2006) Cell. Mol. Life Sci., 63 (24), pp. 2889-2900 
504 |a Gold, B.G., Villafranca, J.E., Neuroimmunophilin ligands: The development of novel neuroregenerative/ neuroprotective compounds (2003) Curr. Top. Med. Chem., 3 (12), pp. 1368-1375 
504 |a Quinta, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol., 166 (2), pp. 637-649 
504 |a George, S., Pili, R., Carducci, M.A., Kim, J.J., Role of immunotherapy for renal cell cancer in 2011 (2011) J. Natl Compr. Canc. Netw., 9 (9), pp. 1011-1018 
504 |a Shi, Y., Serine/threonine phosphatases: Mechanism through structure (2009) Cell, 139 (3), pp. 468-484 
504 |a Das, A.K., Helps, N.R., Cohen, P.T., Barford, D., Crystal structure of the protein serine/ threonine phosphatase 2C at 2.0 A resolution (1996) EMBO J, 15 (24), pp. 6798-6809 
504 |a Chattopadhaya, S., Harikishore, A., Yoon, H.S., Role of FK506 binding proteins in neurodegenerative disorders (2011) Curr. Med. Chem., 18 (35), pp. 5380-5397 
504 |a Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22 (12), pp. 481-490 
504 |a Silverstein, A.M., Galigniana, M.D., Kanelakis, K.C., Radanyi, C., Renoir, J.M., Pratt, W.B., Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein (1999) J. Biol. Chem., 274 (52), pp. 36980-36986 
504 |a Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1 (4), pp. 299-308 
504 |a Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46 (49), pp. 14044-14057 
504 |a Davies, T.H., Sanchez, E.R., Fkbp52 (2005) Int. J. Biochem. Cell Biol., 37 (1), pp. 42-47 
504 |a Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30 (5), pp. 1285-1298 
504 |a Thomas, M., Harrell, J.M., Morishima, Y., Peng, H.M., Pratt, W.B., Lieberman, A.P., Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction (2006) Hum. Mol. Genet., 15 (11), pp. 1876-1883 
504 |a Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J. Biol. Chem., 279 (21), pp. 22483-22489 
504 |a Colo, G.P., Rubio, M.F., Nojek, I.M., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27 (17), pp. 2430-2444 
504 |a Zhao, W., Zhong, L., Wu, J., Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors (2006) Virology, 353 (2), pp. 283-293 
504 |a Walker, V.E., Atanasiu, R., Lam, H., Shrier, A., Co-chaperone FKBP38 promotes HERG trafficking (2007) J. Biol. Chem., 282 (32), pp. 23509-23516 
504 |a Li, P., Ding, Y., Wu, B., Shu, C., Shen, B., Rao, Z., Structure of the N-terminal domain of human FKBP52 (2003) Acta Crystallogr. D Biol. Crystallogr., 59 (PART 1), pp. 16-22 
504 |a Vafopoulou, X., Steel, C.G., Cytoplasmic travels of the ecdysteroid receptor in target cells: Pathways for both genomic and non-genomic actions (2012) Front. Endocrinol. (Lausanne, 3, p. 43 
504 |a Galigniana, M.D., Morishima, Y., Gallay, P.A., Pratt, W.B., Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex (2004) J. Biol. Chem., 279 (53), pp. 55754-55759 
504 |a Caballes, R., Cyclosporine, R.Mw., Hepatitis C, (2012) Open J. Organ Transpl. Surg., 2, pp. 32-36 
504 |a Von Hahn, T., Ciesek, S., Manns, M.P., Arrest all accessories - Inhibition of hepatitis C virus by compounds that target host factors (2011) Discov. Med., 12 (64), pp. 237-244 
504 |a Echeverria, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol. Cell. Biol., 29 (17), pp. 4788-4797 
504 |a Galigniana, M.D., Harrell, J.M., Murphy, P.J., Binding of hsp90-associated immunophilins to cytoplasmic dynein: Direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain (2002) Biochemistry, 41 (46), pp. 13602-13610 
504 |a Vermeer, H., Hendriks-Stegeman, B.I., Van Der Burg, B., Van Buul-Offers, S.C., Jansen, M., Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potency, and bioavailability (2003) J. Clin. Endocrinol. Metab., 88 (1), pp. 277-284 
504 |a Chambraud, B., Belabes, H., Fontaine-Lenoir, V., Fellous, A., Baulieu, E.E., The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation (2007) FASEB J, 21 (11), pp. 2787-2797 
504 |a Quinta, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., Management of cytoskeleton architecture by molecular chaperones and immunophilins (2011) Cell Signal, 23 (12), pp. 1907-1920 
504 |a Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734 
504 |a Yao, Y.L., Liang, Y.C., Huang, H.H., Yang, W.M., FKBPs in chromatin modification and cancer (2011) Curr. Opin. Pharmacol., 11 (4), pp. 301-307 
504 |a Yang, W.M., Yao, Y.L., Seto, E., The FK506- binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1 (2001) EMBO J, 20 (17), pp. 4814-4825 
504 |a Ochocka, A.M., Kampanis, P., Nicol, S., FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53 (2009) FEBS Lett, 583 (4), pp. 621-626 
504 |a Gorlich, D., Kutay, U., Transport between the cell nucleus and the cytoplasm (1999) Annu. Rev. Cell Dev. Biol., 15, pp. 607-660 
504 |a Moretto-Zita, M., Jin, H., Shen, Z., Zhao, T., Briggs, S.P., Xu, Y., Phosphorylation stabilizes Nanog by promoting its interaction with Pin1 (2010) Proc. Natl Acad. Sci. USA, 107 (30), pp. 13312-13317 
504 |a Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52 kDa FK506-binding protein (FKBP52 (2011) Curr. Opin. Pharmacol., 11 (4), pp. 314-319 
504 |a Stechschulte, L.A., Sanchez, E.R., FKBP51 - A selective modulator of glucocorticoid and androgen sensitivity (2011) Curr. Opin. Pharmacol., 11 (4), pp. 332-337 
504 |a Chen, H., Yong, W., Hinds Jr., T.D., Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis (2010) J. Biol. Chem., 285 (36), pp. 27776-27784 
504 |a Periyasamy, S., Hinds Jr., T., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29 (11), pp. 1691-1701 
504 |a Eitoku, M., Sato, L., Senda, T., Horikoshi, M., Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly (2008) Cell Mol. Life Sci., 65 (3), pp. 414-444 
504 |a Leclercq, M., Vinci, F., Galat, A., Mammalian FKBP-25 and its associated proteins (2000) Arch. Biochem. Biophys., 380 (1), pp. 20-28 
504 |a Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr. Opin. Pharmacol., 11 (4), pp. 320-325 
504 |a Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90 kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286 (34), pp. 30152-30160 
504 |a Li, L., Lou, Z., Wang, L., The role of FKBP5 in cancer aetiology and chemoresistance (2011) Br. J. Cancer, 104 (1), pp. 19-23 
504 |a Pei, H., Li, L., Fridley, B.L., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt (2009) Cancer Cell, 16 (3), pp. 259-266 
504 |a Romano, S., D'Angelillo, A., Pacelli, R., Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells (2010) Cell Death Differ, 17 (1), pp. 145-157 
504 |a Mukaide, H., Adachi, Y., Taketani, S., FKBP51 expressed by both normal epithelial cells and adenocarcinoma of colon suppresses proliferation of colorectal adenocarcinoma (2008) Cancer Invest, 26 (4), pp. 385-390 
504 |a Periyasamy, S., Warrier, M., Tillekeratne, M.P., Shou, W., Sanchez, E.R., The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms (2007) Endocrinology, 148 (10), pp. 4716-4726 
504 |a Ostrow, K.L., Park, H.L., Hoque, M.O., Pharmacologic unmasking of epigenetically silenced genes in breast cancer (2009) Clin. Cancer Res., 15 (4), pp. 1184-1191 
504 |a Pearson, J.D., Mohammed, Z., Bacani, J.T., Lai, R., Ingham, R.J., The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein (2012) BMC Cancer, 12, p. 229 
504 |a Heldring, N., Pike, A., Andersson, S., Estrogen receptors: How do they signal and what are their targets (2007) Physiol. Rev., 87 (3), pp. 905-931 
504 |a Renoir, J.M., Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches (2012) Steroids, 77 (12), pp. 1249-1261 
504 |a Gougelet, A., Bouclier, C., Marsaud, V., Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells (2005) J. Steroid Biochem. Mol. Biol., 94 (1-3), pp. 71-81 
504 |a Meyer, B.K., Pray-Grant, M.G., Vanden Heuvel, J.P., Perdew, G.H., Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity (1998) Mol. Cell. Biol., 18 (2), pp. 978-988 
504 |a Cai, W., Kramarova, T.V., Berg, P., Korbonits, M., Pongratz, I., The immunophilin-like protein XAP2 is a negative regulator of estrogen signaling through interaction with estrogen receptor alpha (2011) PLoS ONE, 6 (10), pp. e25201 
504 |a De Leon, J.T., Iwai, A., Feau, C., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells (2011) Proc. Natl Acad. Sci. USA, 108 (29), pp. 11878-11883 
504 |a Edlich, F., Weiwad, M., Wildemann, D., The specific FKBP38 inhibitor N-(Ń,Ń- dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia (2006) J. Biol. Chem., 281 (21), pp. 14961-14970 
504 |a Gold, B.G., Armistead, D.M., Wang, M.S., Non- FK506-binding protein-12 neuroimmunophilin ligands increase neurite elongation and accelerate nerve regeneration (2005) J. Neurosci. Res., 80 (1), pp. 56-65 
504 |a Gold, B.G., Voda, J., Yu, X., Gordon, H., The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy (2004) Exp. Neurol., 187 (1), pp. 160-170 
504 |a Gold, B.G., Voda, J., Yu, X., McKeon, G., Bourdette, D.N., FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: Neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis (2004) J. Neurosci. Res., 77 (3), pp. 367-377 
504 |a Pong, K., Zaleska, M.M., Therapeutic implications for immunophilin ligands in the treatment of neurodegenerative diseases (2003) Curr. Drug Targets CNS Neurol. Disord., 2 (6), pp. 349-356 
504 |a Gerard, M., Deleersnijder, A., Demeulemeester, J., Debyser, Z., Baekelandt, V., Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration (2011) Mol. Neurobiol., 44 (1), pp. 13-27 
504 |a Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115 (3), pp. 716-734 
504 |a Sanokawa-Akakura, R., Dai, H., Akakura, S., A novel role for the immunophilin FKBP52 in copper transport (2004) J. Biol. Chem., 279 (27), pp. 27845-27848 
504 |a Zheng, W., Monnot, A.D., Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases (2012) Pharmacol. Ther., 133 (2), pp. 177-188 
504 |a Mills, E., Dong, X.P., Wang, F., Xu, H., Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders (2010) Future Med. Chem., 2 (1), pp. 51-64 
504 |a Chambraud, B., Sardin, E., Giustiniani, J., A role for FKBP52 in Tau protein function (2010) Proc. Natl Acad. Sci. USA, 107 (6), pp. 2658-2663 
504 |a Salminen, A., Ojala, J., Kaarniranta, K., Hiltunen, M., Soininen, H., Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease (2011) Prog. Neurobiol., 93 (1), pp. 99-110 
504 |a Jinwal, U.K., Koren III, J., Borysov, S.I., The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules (2010) J. Neurosci., 30 (2), pp. 591-599 
504 |a Islam, M.S., Transient receptor potential channels (2011) Advances in Experimental Medicine and Biology, , (1st edition). Islam MS (Ed.). Springer, NY, USA 
504 |a Parekh, A.B., Putney Jr., J.W., Store-operated calcium channels (2005) Physiol. Rev., 85 (2), pp. 757-810 
504 |a Uchino, H., Kuroda, Y., Morota, S., Probing the molecular mechanisms of neuronal degeneration: Importance of mitochondrial dysfunction and calcineurin activation (2008) J. Anesth., 22 (3), pp. 253-262 
504 |a Golstein, P., Kroemer, G., Cell death by necrosis: Towards a molecular definition (2007) Trends Biochem. Sci., 32 (1), pp. 37-43 
504 |a Bell, R.D., Winkler, E.A., Singh, I., Apolipoprotein e controls cerebrovascular integrity via cyclophilin A (2012) Nature, 485 (7399), pp. 512-516 
504 |a Tribouillard-Tanvier, D., Carroll, J.A., Moore, R.A., Striebel, J.F., Chesebro, B., Role of cyclophilin A from brains of prion-infected mice in stimulation of cytokine release by microglia and astroglia in vitro (2012) J. Biol. Chem., 287 (7), pp. 4628-4639 
504 |a Pastorino, L., Sun, A., Lu, P.J., The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production (2006) Nature, 440 (7083), pp. 528-534 
504 |a Sultana, R., Boyd-Kimball, D., Poon, H.F., Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis (2006) Neurobiol. Aging, 27 (7), pp. 918-925 
504 |a Ryo, A., Togo, T., Nakai, T., Prolyl-isomerase Pin1 accumulates in lewy bodies of parkinson disease and facilitates formation of alpha-synuclein inclusions (2006) J. Biol. Chem., 281 (7), pp. 4117-4125 
504 |a Kockx, M., Jessup, W., Kritharides, L., Cyclosporin A and atherosclerosis - Cellular pathways in atherogenesis (2010) Pharmacol. Ther., 128 (1), pp. 106-118 
504 |a Hackstein, H., Steinschulte, C., Fiedel, S., Sanglifehrin a blocks key dendritic cell functions in vivo and promotes long-term allograft survival together with low-dose CsA (2007) Am. J. Transplant, 7 (4), pp. 789-798 
504 |a Immecke, S.N., Baal, N., Wilhelm, J., The cyclophilin-binding agent Sanglifehrin A is a dendritic cell chemokine and migration inhibitor (2011) PLoS ONE, 6 (3), pp. e18406 
504 |a Cascone, S., Lamberti, G., Titomanlio, G., Barba, A.A., D'Amore, M., Microencapsulation effectiveness of small active molecules in biopolymer by ultrasonic atomization technique (2012) Drug Dev. Ind. Pharm., 38 (12), pp. 1486-1493 
504 |a Estebanez-Perpina, E., Arnold, L.A., Nguyen, P., A surface on the androgen receptor that allosterically regulates coactivator binding (2007) Proc. Natl Acad. Sci. USA, 104 (41), pp. 16074-16079 
504 |a Sankhala, K.K., Mita, M.M., Mita, A.C., Takimoto, C.H., Heat shock proteins: A potential anticancer target (2011) Curr. Drug Targets., 12 (14), pp. 2001-2008 
504 |a Galigniana, N.M., Ballmer, L.T., Toneatto, J., Erlejman, A.G., Lagadari, M., Galigniana, M.D., Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51 (2012) J. Neurochem., 122 (1), pp. 4-18 
504 |a Touma, C., Gassen, N.C., Herrmann, L., FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior (2011) Biol. Psychiatry, 70 (10), pp. 928-936 
504 |a Hartmann, J., Wagner, K.V., Liebl, C., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress (2012) Neuropharmacology, 62 (1), pp. 332-339 
504 |a Schmidt, M.V., Paez-Pereda, M., Holsboer, F., Hausch, F., The prospect of FKBP51 as a drug target (2012) ChemMedChem, 7 (8), pp. 1351-1359 
504 |a Gopalakrishnan, R., Kozany, C., Gaali, S., Evaluation of synthetic FK506 analogues as ligands for the FK506-binding proteins 51 and 52 (2012) J. Med. Chem., 55 (9), pp. 4114-4122 
504 |a Lu, J.J., Bao, J.L., Wu, G.S., Quinones derived from plant secondary metabolites as anti-cancer agents (2012) Anticancer Agents Med. Chem., 13 (3), pp. 456-463 
504 |a Guo, C., Hou, X., Dong, L., Structure-based design of novel human Pin1 inhibitors (I (2009) Bioorg. Med. Chem. Lett., 19 (19), pp. 5613-5616 
504 |a Schiene-Fischer, C., Aumuller, T., Fischer, G., Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins (2013) Top. Curr. Chem., 328, pp. 35-67 
520 3 |a Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in basic processes such as protein-protein interactions, signal transduction cascades, cell differentiation, cell cycle progression, metabolic activity, apoptosis mechanisms, microorganisms infection, cancer, neurotrophism and neuroprotection, among several other physiological and pathophysiological processes. Due to all these emerging features, the development of specific ligands for immunophilins appears to have promising perspectives, in particular in the fields of cancer biology and neuroregeneration fields. We review the emerging role of immunophilins in protein transport, transcription regulation, malignancies development and neurotrophic action, in addition to a number of biological properties that transform these proteins in potential targets for novel therapeutic strategies. © 2013 Future Science Ltd.  |l eng 
593 |a Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina 
593 |a Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires (C1428ADN), Buenos Aires, Argentina 
690 1 0 |a ALISPORIVIR 
690 1 0 |a APOLIPOPROTEIN E 
690 1 0 |a CORTICOSTEROID RECEPTOR 
690 1 0 |a CYCLIN D1 
690 1 0 |a CYCLOSPORIN A 
690 1 0 |a FK 506 BINDING PROTEIN 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a HEAT SHOCK PROTEIN 90 
690 1 0 |a IMMUNOPHILIN 
690 1 0 |a RAPAMYCIN 
690 1 0 |a TACROLIMUS 
690 1 0 |a TRANSCRIPTION FACTOR YY1 
690 1 0 |a ALZHEIMER DISEASE 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a APOPTOSIS 
690 1 0 |a BREAST CARCINOMA 
690 1 0 |a CELL ACTIVITY 
690 1 0 |a CELL CYCLE PROGRESSION 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL METABOLISM 
690 1 0 |a CHROMATIN ASSEMBLY AND DISASSEMBLY 
690 1 0 |a CHROMATIN STRUCTURE 
690 1 0 |a COLORECTAL CARCINOMA 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a HEPATITIS C 
690 1 0 |a HUMAN 
690 1 0 |a IMMUNOREACTIVITY 
690 1 0 |a METASTATIC MELANOMA 
690 1 0 |a MOLECULAR WEIGHT 
690 1 0 |a NERVE CELL DIFFERENTIATION 
690 1 0 |a NEUROPROTECTION 
690 1 0 |a NEUROTROPISM 
690 1 0 |a NONHUMAN 
690 1 0 |a PATHOPHYSIOLOGY 
690 1 0 |a PHASE 3 CLINICAL TRIAL (TOPIC) 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROSTATE CARCINOMA 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a REVIEW 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a TETRATRICOPEPTIDE REPEAT 
690 1 0 |a TRANSCRIPTION INITIATION 
690 1 0 |a TRANSCRIPTION REGULATION 
690 1 0 |a ANIMALS 
690 1 0 |a DRUG DISCOVERY 
690 1 0 |a HSP90 HEAT-SHOCK PROTEINS 
690 1 0 |a HUMANS 
690 1 0 |a IMMUNOPHILINS 
690 1 0 |a NEOPLASMS 
690 1 0 |a NEUROGENESIS 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a TRANSCRIPTIONAL ACTIVATION 
653 0 0 |a debio 025; fk 506 
700 1 |a Lagadari, M. 
700 1 |a Galigniana, M.D. 
773 0 |d 2013  |g v. 5  |h pp. 591-607  |k n. 5  |p Future. Med. Chem.  |x 17568919  |t Future Medicinal Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876132812&doi=10.4155%2ffmc.13.7&partnerID=40&md5=1411dbf669422e8dac5664bcc266042b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4155/fmc.13.7  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17568919_v5_n5_p591_Erlejman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17568919_v5_n5_p591_Erlejman  |y Registro en la Biblioteca Digital 
961 |a paper_17568919_v5_n5_p591_Erlejman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72597