Characterization of classical graph classes by weighted clique graphs

Given integers m1, ..., mℓ, the weighted clique graph of G is the clique graph K (G), in which there is a weight assigned to each complete set S of size mi of K (G), for each i = 1, ..., ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Szwarcfiter, J.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02607caa a22003977a 4500
001 PAPER-11558
003 AR-BaUEN
005 20230518204143.0
008 140217s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84877736831 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DAMAD 
100 1 |a Bonomo, F. 
245 1 0 |a Characterization of classical graph classes by weighted clique graphs 
260 |c 2013 
270 1 0 |m Bonomo, F.; DC, FCEN, Universidad de Buenos Aires, Argentinaemail: fbonomo@dc.uba.ar 
506 |2 openaire  |e Política editorial 
520 3 |a Given integers m1, ..., mℓ, the weighted clique graph of G is the clique graph K (G), in which there is a weight assigned to each complete set S of size mi of K (G), for each i = 1, ..., ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer's characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others. © 2013 Elsevier B.V. All rights reserved.  |l eng 
536 |a Article in Press 
593 |a DC, FCEN, Universidad de Buenos Aires, Argentina 
593 |a IMAS-CONICET, Universidad de Buenos Aires, Argentina 
593 |a COPPE, Universidade Federal do Rio de Janeiro, Brazil 
593 |a IM, Universidade Federal do Rio de Janeiro, Brazil 
593 |a NCE, Universidade Federal do Rio de Janeiro, Brazil 
690 1 0 |a GRAPH CLASSES STRUCTURAL CHARACTERIZATION 
690 1 0 |a WEIGHTED CLIQUE GRAPHS 
700 1 |a Szwarcfiter, J.L. 
773 0 |d 2013  |p Discrete Appl Math  |x 0166218X  |w (AR-BaUEN)CENRE-310  |t Discrete Applied Mathematics 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84877736831&partnerID=40&md5=edadcaa0f61d72f4bceead2d1d3b47d2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.dam.2013.04.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0166218X_v_n_p_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v_n_p_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_0166218X_v_n_p_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72511