Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum

Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kuhar, F.
Otros Autores: Papinutti, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes. However, the survival of mycelia in harsh conditions is one of the drawbacks of those methodologies. In this study, it was demonstrated that culture media supplemented with several guaiacol derivatives (vanilloids) increased the resistance of Ganoderma lucidum E47 cultures to chemical stress by enhancing the adsorptive capacity of the extracellular mucilaginous material (ECMM). The toxicity of the fungicides gentian violet (GV), malachite green (MG) and clotrimazole, and the heavy metal Cadmium was noticeably diminished in fungal cultures supplemented with the guaiacol derivative vanillic acid (VA). No degradation of the tested compounds was detected. The activity of the oxidative enzymatic systems like laccase, a well-known oxidase associated to dye degradation, was only detectable after complete growth on plates. Extremely low concentrations of VA caused a significant protective effect, radial extension of the growth halo in plates supplemented with 0.0001mM of VA plus GV was up to 20% to that obtained in control plates (without addition of GV and VA). Therefore, the protective effect could not be attributable to VA per se. ECMM separated from the mycelium exhibited a much higher increase in the adsorptive capacity when isolated from liquid cultures containing VA, while that obtained from unsupplemented cultures showed an almost null adsorptive capacity. © 2013 Elsevier Ltd.
Bibliografía:Ambrósio, S.T., Vilar, J.C., Alves da Silva, C., Okada, K., Nascimento, A., Longo, R., Campos, G., Biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UPC5422012 (2012) Molecules, 17, pp. 452-462
Archibald, F.S., Anew assay for lignin-type peroxidases employing the dye azure B (1992) Appl. Environ. Microbiol., 58, pp. 3110-3116
Argumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., Almaraz, J.J., Peña-Cabriales, J.J., Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene (2012) J.Environ. Manage., 95, pp. S291-S299
Asgher, M., Biosorption of reactive dyes: a review (2012) Water Air Soil Pollut., 223, pp. 2417-2435
Asgher, M., Noreen, S., Bhatti, H.N., Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures (2010) Water Environ. Res., 82, pp. 357-361
Barr, D.P., Aust, S.D., Mechanisms white-rot fungi use to degrade pollutants (1994) Environ. Sci. Technol., 28, pp. 78-87
Bibi, I., Bhatti, H.N., Asgher, M., Decolourisation of direct dyes with manganese peroxidase from white rot basidiomycete Ganoderma lucidum IBL-5 (2009) Can. J. Chem. Eng., 87, pp. 435-440
Borrás, E., Llorens-Blanch, G., Rodríguez-Rodríguez, C., Sarrá, M., Caminal, G., Soil colonization by Trametes versicolor grown on lignocellulosic materials: substrate selection and naproxen degradation (2011) Int. Biodeter. Biodegr., 65, pp. 846-852
Cerino-Córdova, F.J., García-León, A.M., Soto-Regalado, E., Sánchez-González, M.N., Lozano-Ramírez, T., García-Avalos, B.C., Loredo-Medrano, J.A., Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus (2012) J.Environ. Manage., 95, pp. S77-S82
Colica, G., Mecarozzi, P.C., De Philippis, R., Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems (2010) Appl. Microbiol. Biotechnol., 87, pp. 1953-1961
Cruz Ramírez, M.G., Rivera-Ríos, J.M., Téllez-Jurado, A., Maqueda Gálvez, A.P., Mercado-Flores, Y., Arana-Cuenca, A., Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico (2012) J.Environ. Manage., 95, pp. S256-S259
Cullen, D., Kersten, P.J., Enzymology and molecular biology of lignin degradation (2004) The Mycota III: Biochemistry and Molecular Biology, pp. 249-273. , Springer-Verlag, Berlin-Heidelberg, R. Brambl, G.A. Marzluf (Eds.)
de la Rubia, T., Ruiz, E., Pérez, J., Martínez, J., Properties of a laccase produced by Phanerochaete flavido-alba induced by vanillin (2002) Arch. Microbiol., 179, pp. 70-73
Gao, D., Du, L., Yang, J., Wu, W.-M., Liang, H., Acritical review of the application of white rot fungus to environmental pollution control (2010) Crit. Rev. Biotechnol., 30, pp. 70-77
Gao, D., Zeng, Y., Wen, X., Qian, Y., Competition strategies for the incubation of white rot fungi under non-sterile conditions (2008) Process. Biochem., 43, pp. 937-944
González, A.G., Shirokova, L.S., Pokrovsky, O.S., Emnova, E.E., Martínez, R.E., Santana-Casiano, J.M., González-Dávila, M., Pokrovski, G.S., Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides (2010) J.Colloid Interface Sci., 350, pp. 305-314
Kantar, C., Demiray, H., Dogan, N.M., Dodge, C.J., Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr (III) complexation with EPS in aqueous solution (2011) Chemosphere, 82, pp. 1489-1495
Kulshresta, M., Venkobachar, C., Removal and recovery of uranium (VI) using a fungal based low-cost biosorbent Ganoderma lucidum (2008) Int. J. Environ. Pollut., 34, pp. 83-96
Lang, E., Nerud, F., Zadrazil, F., Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms (1998) FEMS Microbiol. Lett., 167, pp. 239-244
Lestan, D., Lestan, M., Chapelle, J.A., Lamar, R.T., Biological potential of fungal inocula for bioaugmentation of contaminated soils (1996) J.Ind. Microbiol., 16, pp. 286-294
Levin, L., Papinutti, L., Forchiassin, F., Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes (2004) Bioresour. Technol., 94, pp. 169-176
Maurya, N.S., Mittal, A.K., Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal biomass (2011) Int. J. Environ. Technol. Manag., 14, pp. 282-293
Mougin, C., Pericaud, C., Dubroca, J., Asther, M., Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium (1997) Soil Biol. Biochem., 29, pp. 1321-1324
Pakshirajan, K., Kheria, S., Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor (2012) J.Environ. Manage., 101, pp. 118-123
Papinutti, L., Mouso, N., Forchiassin, F., Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus (2006) Enzyme Microb. Technol., 39, pp. 848-853
Pointing, S.B., Feasibility of bioremediation by white-rot fungi (2001) Appl. Microbiol. Biotechnol., 57, pp. 20-33
Rosa, A., Atzeri, A., Deiana, M., Melis, M.P., Incani, A., Corona, G., Loru, D., Dessi, A.M., Protective effect of vanilloids against tert-butyl hydroperoxide-induced oxidative stress in vero cells culture (2008) J.Agric. Food Chem., 56, pp. 3546-3553
Srinivasan, A., Viraraghavan, T., Decolorization of dye wastewaters by biosorbents: a review (2010) J.Environ. Manage., 91, pp. 1915-1929
Ting, W.T.E., Yuan, S.Y., Wu, S.D., Chang, B.V., Biodegradation of phenanthrene and pyrene by Ganoderma lucidum (2011) Int. Biodeter. Biodegr., 65, pp. 238-242
Turlo, J., Gutkowska, B., Herold, F., Dawidowski, M., Slowinski, T., Zobel, A., Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) cultures (2010) J.Toxicol. Environ. Health A, 73, pp. 1211-1219
Volesky, B., Biosorption by fungal biomass (1990) Biosorption of Heavy Metals, pp. 139-172. , CRC Press, New York, B. Volesky (Ed.)
Wang, L., Chen, G.-Q., Zeng, G.-M., Zhang, W.-J., Fan, J.-Q., Shen, G.-L., Extracellular polymeric substances (EPS) of white-rot fungus and their effects on Pb2+ adsorption by biomass (2011) Huanjing Kexue/Environ. Sci., 32, pp. 773-778
Wong, D.W.S., Structure and action mechanism of ligninolytic enzymes (2009) Appl. Biochem. Biotechnol., 157, pp. 174-209
Xiao, Y., Chen, Q., Hang, J., Shi, Y., Wu, J., Hong, Y., Wang, Y., Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2 (2004) Mycologia, 96, pp. 26-35
ISSN:03014797
DOI:10.1016/j.jenvman.2013.03.040