Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum

Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kuhar, F.
Otros Autores: Papinutti, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13756caa a22015137a 4500
001 PAPER-11477
003 AR-BaUEN
005 20230518204138.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84876324505 
024 7 |2 cas  |a cadmium, 22537-48-0, 7440-43-9; clotrimazole, 23593-75-1; crystal violet, 467-63-0, 548-62-9; guaiacol, 26638-03-9, 28930-19-0, 90-05-1; malachite green, 569-64-2; vanillic acid, 121-34-6; coumaric acid, 25429-38-3; ferulic acid, 1135-24-6, 24276-84-4; vanillin, 121-33-5; Benzaldehydes; Coumaric Acids; Environmental Pollutants; ferulic acid; Fungicides, Industrial; Vanillic Acid; vanillin 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JEVMA 
100 1 |a Kuhar, F. 
245 1 0 |a Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum 
260 |c 2013 
270 1 0 |m Papinutti, L.; Lab. de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Universitaria, Argentina; email: leandropapinutti@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ambrósio, S.T., Vilar, J.C., Alves da Silva, C., Okada, K., Nascimento, A., Longo, R., Campos, G., Biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UPC5422012 (2012) Molecules, 17, pp. 452-462 
504 |a Archibald, F.S., Anew assay for lignin-type peroxidases employing the dye azure B (1992) Appl. Environ. Microbiol., 58, pp. 3110-3116 
504 |a Argumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., Almaraz, J.J., Peña-Cabriales, J.J., Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene (2012) J.Environ. Manage., 95, pp. S291-S299 
504 |a Asgher, M., Biosorption of reactive dyes: a review (2012) Water Air Soil Pollut., 223, pp. 2417-2435 
504 |a Asgher, M., Noreen, S., Bhatti, H.N., Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures (2010) Water Environ. Res., 82, pp. 357-361 
504 |a Barr, D.P., Aust, S.D., Mechanisms white-rot fungi use to degrade pollutants (1994) Environ. Sci. Technol., 28, pp. 78-87 
504 |a Bibi, I., Bhatti, H.N., Asgher, M., Decolourisation of direct dyes with manganese peroxidase from white rot basidiomycete Ganoderma lucidum IBL-5 (2009) Can. J. Chem. Eng., 87, pp. 435-440 
504 |a Borrás, E., Llorens-Blanch, G., Rodríguez-Rodríguez, C., Sarrá, M., Caminal, G., Soil colonization by Trametes versicolor grown on lignocellulosic materials: substrate selection and naproxen degradation (2011) Int. Biodeter. Biodegr., 65, pp. 846-852 
504 |a Cerino-Córdova, F.J., García-León, A.M., Soto-Regalado, E., Sánchez-González, M.N., Lozano-Ramírez, T., García-Avalos, B.C., Loredo-Medrano, J.A., Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus (2012) J.Environ. Manage., 95, pp. S77-S82 
504 |a Colica, G., Mecarozzi, P.C., De Philippis, R., Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems (2010) Appl. Microbiol. Biotechnol., 87, pp. 1953-1961 
504 |a Cruz Ramírez, M.G., Rivera-Ríos, J.M., Téllez-Jurado, A., Maqueda Gálvez, A.P., Mercado-Flores, Y., Arana-Cuenca, A., Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico (2012) J.Environ. Manage., 95, pp. S256-S259 
504 |a Cullen, D., Kersten, P.J., Enzymology and molecular biology of lignin degradation (2004) The Mycota III: Biochemistry and Molecular Biology, pp. 249-273. , Springer-Verlag, Berlin-Heidelberg, R. Brambl, G.A. Marzluf (Eds.) 
504 |a de la Rubia, T., Ruiz, E., Pérez, J., Martínez, J., Properties of a laccase produced by Phanerochaete flavido-alba induced by vanillin (2002) Arch. Microbiol., 179, pp. 70-73 
504 |a Gao, D., Du, L., Yang, J., Wu, W.-M., Liang, H., Acritical review of the application of white rot fungus to environmental pollution control (2010) Crit. Rev. Biotechnol., 30, pp. 70-77 
504 |a Gao, D., Zeng, Y., Wen, X., Qian, Y., Competition strategies for the incubation of white rot fungi under non-sterile conditions (2008) Process. Biochem., 43, pp. 937-944 
504 |a González, A.G., Shirokova, L.S., Pokrovsky, O.S., Emnova, E.E., Martínez, R.E., Santana-Casiano, J.M., González-Dávila, M., Pokrovski, G.S., Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides (2010) J.Colloid Interface Sci., 350, pp. 305-314 
504 |a Kantar, C., Demiray, H., Dogan, N.M., Dodge, C.J., Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr (III) complexation with EPS in aqueous solution (2011) Chemosphere, 82, pp. 1489-1495 
504 |a Kulshresta, M., Venkobachar, C., Removal and recovery of uranium (VI) using a fungal based low-cost biosorbent Ganoderma lucidum (2008) Int. J. Environ. Pollut., 34, pp. 83-96 
504 |a Lang, E., Nerud, F., Zadrazil, F., Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms (1998) FEMS Microbiol. Lett., 167, pp. 239-244 
504 |a Lestan, D., Lestan, M., Chapelle, J.A., Lamar, R.T., Biological potential of fungal inocula for bioaugmentation of contaminated soils (1996) J.Ind. Microbiol., 16, pp. 286-294 
504 |a Levin, L., Papinutti, L., Forchiassin, F., Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes (2004) Bioresour. Technol., 94, pp. 169-176 
504 |a Maurya, N.S., Mittal, A.K., Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal biomass (2011) Int. J. Environ. Technol. Manag., 14, pp. 282-293 
504 |a Mougin, C., Pericaud, C., Dubroca, J., Asther, M., Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium (1997) Soil Biol. Biochem., 29, pp. 1321-1324 
504 |a Pakshirajan, K., Kheria, S., Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor (2012) J.Environ. Manage., 101, pp. 118-123 
504 |a Papinutti, L., Mouso, N., Forchiassin, F., Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus (2006) Enzyme Microb. Technol., 39, pp. 848-853 
504 |a Pointing, S.B., Feasibility of bioremediation by white-rot fungi (2001) Appl. Microbiol. Biotechnol., 57, pp. 20-33 
504 |a Rosa, A., Atzeri, A., Deiana, M., Melis, M.P., Incani, A., Corona, G., Loru, D., Dessi, A.M., Protective effect of vanilloids against tert-butyl hydroperoxide-induced oxidative stress in vero cells culture (2008) J.Agric. Food Chem., 56, pp. 3546-3553 
504 |a Srinivasan, A., Viraraghavan, T., Decolorization of dye wastewaters by biosorbents: a review (2010) J.Environ. Manage., 91, pp. 1915-1929 
504 |a Ting, W.T.E., Yuan, S.Y., Wu, S.D., Chang, B.V., Biodegradation of phenanthrene and pyrene by Ganoderma lucidum (2011) Int. Biodeter. Biodegr., 65, pp. 238-242 
504 |a Turlo, J., Gutkowska, B., Herold, F., Dawidowski, M., Slowinski, T., Zobel, A., Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) cultures (2010) J.Toxicol. Environ. Health A, 73, pp. 1211-1219 
504 |a Volesky, B., Biosorption by fungal biomass (1990) Biosorption of Heavy Metals, pp. 139-172. , CRC Press, New York, B. Volesky (Ed.) 
504 |a Wang, L., Chen, G.-Q., Zeng, G.-M., Zhang, W.-J., Fan, J.-Q., Shen, G.-L., Extracellular polymeric substances (EPS) of white-rot fungus and their effects on Pb2+ adsorption by biomass (2011) Huanjing Kexue/Environ. Sci., 32, pp. 773-778 
504 |a Wong, D.W.S., Structure and action mechanism of ligninolytic enzymes (2009) Appl. Biochem. Biotechnol., 157, pp. 174-209 
504 |a Xiao, Y., Chen, Q., Hang, J., Shi, Y., Wu, J., Hong, Y., Wang, Y., Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2 (2004) Mycologia, 96, pp. 26-35 
520 3 |a Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes. However, the survival of mycelia in harsh conditions is one of the drawbacks of those methodologies. In this study, it was demonstrated that culture media supplemented with several guaiacol derivatives (vanilloids) increased the resistance of Ganoderma lucidum E47 cultures to chemical stress by enhancing the adsorptive capacity of the extracellular mucilaginous material (ECMM). The toxicity of the fungicides gentian violet (GV), malachite green (MG) and clotrimazole, and the heavy metal Cadmium was noticeably diminished in fungal cultures supplemented with the guaiacol derivative vanillic acid (VA). No degradation of the tested compounds was detected. The activity of the oxidative enzymatic systems like laccase, a well-known oxidase associated to dye degradation, was only detectable after complete growth on plates. Extremely low concentrations of VA caused a significant protective effect, radial extension of the growth halo in plates supplemented with 0.0001mM of VA plus GV was up to 20% to that obtained in control plates (without addition of GV and VA). Therefore, the protective effect could not be attributable to VA per se. ECMM separated from the mycelium exhibited a much higher increase in the adsorptive capacity when isolated from liquid cultures containing VA, while that obtained from unsupplemented cultures showed an almost null adsorptive capacity. © 2013 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank Susana Nievas for cadmium determinations and Gustavo Guajardo for kindly proofreading our English manuscript. This work was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Argentina, and Universidad de Buenos Aires . 
593 |a Lab. de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Universitaria, Argentina 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a BIOSORPTION 
690 1 0 |a EXOPOLYSACCHARIDE 
690 1 0 |a FUNGAL GROWTH 
690 1 0 |a LIGNINOLYTIC ENZYMES 
690 1 0 |a WHITE ROT FUNGI 
690 1 0 |a CADMIUM 
690 1 0 |a CLOTRIMAZOLE 
690 1 0 |a CRYSTAL VIOLET 
690 1 0 |a GUAIACOL 
690 1 0 |a MALACHITE GREEN 
690 1 0 |a VANILLIC ACID 
690 1 0 |a BENZALDEHYDE DERIVATIVE 
690 1 0 |a COUMARIC ACID 
690 1 0 |a FERULIC ACID 
690 1 0 |a FUNGICIDE 
690 1 0 |a POLLUTANT 
690 1 0 |a VANILLIC ACID 
690 1 0 |a VANILLIN 
690 1 0 |a ADSORPTION 
690 1 0 |a BIODEGRADATION 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a CADMIUM 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a CONTAMINATED LAND 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FUNGUS 
690 1 0 |a LIGNIN 
690 1 0 |a ORGANIC ACID 
690 1 0 |a POLYSACCHARIDE 
690 1 0 |a TOXICITY 
690 1 0 |a ADSORPTION 
690 1 0 |a ANTIFUNGAL RESISTANCE 
690 1 0 |a ARTICLE 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a BIOSORPTION 
690 1 0 |a CHEMICAL STRESS 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a LIQUID CULTURE 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATION 
690 1 0 |a PROTECTION 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a KINETICS 
690 1 0 |a METABOLISM 
690 1 0 |a POLLUTANT 
690 1 0 |a TOXICITY 
690 1 0 |a FUNGI 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a GENTIANA 
690 1 0 |a ADSORPTION 
690 1 0 |a BENZALDEHYDES 
690 1 0 |a BIODEGRADATION, ENVIRONMENTAL 
690 1 0 |a COUMARIC ACIDS 
690 1 0 |a ENVIRONMENTAL POLLUTANTS 
690 1 0 |a FUNGICIDES, INDUSTRIAL 
690 1 0 |a KINETICS 
690 1 0 |a REISHI 
690 1 0 |a VANILLIC ACID 
700 1 |a Papinutti, L. 
773 0 |d 2013  |g v. 124  |h pp. 1-7  |p J. Environ. Manage.  |x 03014797  |w (AR-BaUEN)CENRE-754  |t Journal of Environmental Management 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876324505&doi=10.1016%2fj.jenvman.2013.03.040&partnerID=40&md5=c045c9c118cbcef51b4d9eb66f5feff0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jenvman.2013.03.040  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03014797_v124_n_p1_Kuhar  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03014797_v124_n_p1_Kuhar  |y Registro en la Biblioteca Digital 
961 |a paper_03014797_v124_n_p1_Kuhar  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72430