Speckle reduction with adaptive stack filters

Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into stacks of binary images according to a set of thresholds. Each binary image is the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Buemi, M.E
Otros Autores: Frery, A.C, Ramos, H.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02904caa a22003737a 4500
001 PAPER-11432
003 AR-BaUEN
005 20230518204134.0
008 140217s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84879713948 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Buemi, M.E. 
245 1 0 |a Speckle reduction with adaptive stack filters 
260 |c 2013 
270 1 0 |m Buemi, M.E.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenosemail: mebuemi@dc.uba.ar 
506 |2 openaire  |e Política editorial 
520 3 |a Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into stacks of binary images according to a set of thresholds. Each binary image is then filtered by a Boolean function, which characterizes the filter. Adaptive stack filters can be computed by training using a prototype (ideal) image and its corrupted version, leading to optimized filters with respect to a loss function. In this work we propose the use of training with selected samples for the estimation of the optimal Boolean function. We study the performance of adaptive stack filters when they are applied to speckled imagery, in particular to Synthetic Aperture Radar (SAR) images. This is done by evaluating the quality of the filtered images through the use of suitable image quality indexes and by measuring the classification accuracy of the resulting images. We used SAR images as input, since they are affected by speckle noise that makes classification a difficult task. © 2013.  |l eng 
536 |a Article in Press 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Buenos Aires, Argentina 
593 |a LCCV and LaCCAN/CPMAT, Universidade Federal de Alagoas, BR 104 Norte km 97, 57072-970 Maceió, AL, Brazil 
690 1 0 |a NON-LINEAR FILTERS 
690 1 0 |a SAR IMAGE FILTERING 
690 1 0 |a SPECKLE NOISE 
690 1 0 |a STACK FILTERS 
700 1 |a Frery, A.C. 
700 1 |a Ramos, H.S. 
773 0 |d 2013  |p Pattern Recogn. Lett.  |x 01678655  |t Pattern Recognition Letters 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84879713948&partnerID=40&md5=6854752d4f4ac0be6e715b15c00c3485  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.patrec.2013.06.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01678655_v_n_p_Buemi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01678655_v_n_p_Buemi  |y Registro en la Biblioteca Digital 
961 |a paper_01678655_v_n_p_Buemi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72385