Host-guest molecular interactions in vanillin/amylose inclusion complexes

The interaction of 4-hydroxy-3-methoxybenzaldehyde (vanillin) and Hylon VII due to the formation of an inclusion complex is studied using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and circular dichroism (CD). The results confirm the close interaction a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodríguez, S.D
Otros Autores: Bernik, D.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10586caa a22011057a 4500
001 PAPER-11391
003 AR-BaUEN
005 20230518204132.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84882377041 
024 7 |2 cas  |a amylose, 9005-82-7; vanillin, 121-33-5; Amylose, 9005-82-7; Benzaldehydes; vanillin, CHI530446X 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a APSPA 
100 1 |a Rodríguez, S.D. 
245 1 0 |a Host-guest molecular interactions in vanillin/amylose inclusion complexes 
260 |c 2013 
270 1 0 |m Bernik, D.L.; Instituto de Química Física de Materiales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: dbernik@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Tester, R.F., Karkalas, J., Qi, X., Starch-composition, fine structure, and architecture (2004) J. Cereal Sci., 39 (2), pp. 151-165 
504 |a Itthisoponkul, T., Mitchell, J.R., Taylor, A.J., Farhat, I.A., Inclusion complexes of tapioca starch with flavour compounds (2007) Carbohydr. Poly., 69 (1), pp. 106-115 
504 |a Yang, Y., Gu, Z., Zhang, G., Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex (2009) J. Agric. Food Chem., 57 (15), pp. 7125-7130 
504 |a Tapanapunnitikul, O., Chaiseri, S., Peterson, D.G., Thompson, D.B., Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch (2008) J. Agric. Food Chem., 56 (1), pp. 220-226 
504 |a Wulff, G., Avgenaki, G., Guzmann, M.S.P., Molecular encapsulation of flavours as helical inclusion complexes of amylose (2005) J. Cereal Sci., 41 (3), pp. 239-249 
504 |a Nuessli, J., Sigg, B., Conde-Petit, B., Escher, F., Characterization of amylose-flavour complexes by DSC and X-ray diffraction (1997) Food Hydrocoll., 11 (1), pp. 27-34 
504 |a Wulff, G., Kubik, S., Helical amylose complexes with organic complexands, 1. Microcalorimetric and circular dichroitic investigations (1992) Die Makromolekulare Chemie, 193 (5), pp. 1071-1080 
504 |a Tai, A., Sawano, T., Yazama, F., Ito, H., Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays (2001) Biochim. Biophys. Acta., 1810 (2), pp. 170-177 
504 |a Rodríguez, S.D., Bernik, D.L., Méreau, R., Castet, F., Champagne, B., Botek, E., Amylose-vanillin complexation assessed by a joint experimental and theoretical analysis (2011) J. Phys. Chem. C, 115 (47), pp. 23315-23322 
504 |a Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy (2002) J. Agric. Food Chem., 50 (14), pp. 3912-3918 
504 |a Balachandran, V., Parimala, K., Vanillin and isovanillin: Comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations (2012) Spectrochim. Acta A, 95, pp. 354-368 
504 |a Gunasekaran, S., Ponnusamy, S., Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3- methoxy-4-hydroxy benzaldehyde (2005) Indian J. Pure Appl. Phys., 43 (11), pp. 838-843 
504 |a Ehrhardt, S.M., (1984) An Investigation on the Vibrational Spectra of Lignin Model Compounds, , [Ph.D. Thesis]. Atlanta, Georgia: Georgia Institute of Technology 
504 |a Yadav, B.S., Tyagi, S.K., Seema, E., Study of vibrational spectra of 4- methyl-3-nitrobenzaldehyde (2006) Indian J. Pure Appl. Phys., 44 (9), pp. 644-648 
504 |a Jouquand, C., Ducruet, V., Le Bail, P., Formation of amylose complexes with C6-aroma compounds in starch dispersions and its impact on retention (2006) Food Chem, 96 (3), pp. 461-470 
504 |a Heinemann, C., Conde-Petit, B., Nuessli, J., Escher, F., Evidence of starch inclusion complexation with lactones (2001) J. Agric. Food Chem., 49 (3), pp. 1370-1376 
504 |a Nuessli, J., Putaux, J.L., Le Bail, P., Buléon, A., Crystal structure of amylose complexes with small ligands (2003) Int. J. Biol. Mol., 33 (4-5), pp. 227-234 
504 |a Zhang, B., Huang, Q., Luo, F., Fu, X., Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid (2012) Food Hydrocoll, 28 (1), pp. 174-181 
504 |a Lay Ma, U.V., Flores, J.D., Ziegler, G.R., Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds (2011) Carbohydrate Polym., 83 (4), pp. 1869-1878 
504 |a Heussen, P., (2011) Practical Food Applications of Differential Scanning Calorimetry (DSC), , http://www.perkinelmer.com/CMSResources/Images/44- 129725APP_DSC_Food_Applications.pdf, Application Note. Vlaardinger, the Netherlands: Unilever Research and Development, [accessed Nov 5 2012] 
504 |a Roy, S., Riga, A.T., Alexander, K.S., Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals (2002) Thermochim. Acta., 392-393, pp. 399-404 
504 |a Gilbert, G.A., Spragg, S.P., Iodimetric determination of amylose (1964) Methods of Carbohydrate Chemistry, 4, pp. 168-169. , R.L. Whistler, editor. New York: Academic Press 
504 |a Conde-Petit, B., Escher, F., Nuessli, J., Structural features of starch-flavor complexation in food model systems (2006) Trends Food Sci. Technol., 17 (5), pp. 227-235 
504 |a Rajendiran, N., Balasubramanian, T., Intramolecular charge transfer of 4- hydroxy-3-methoxybenzaldehyde (2008) Spectrochim. Acta A, 69, pp. 822-829 
504 |a Schofield, W.C.E., Badyal, J.P.S., Controlled fragrant molecule release from surface-tethered cyclodextrin host-guest inclusion complexes (2011) Appl. Mater. Interfaces, 3 (6), pp. 2051-2056 
504 |a Sajan, D., Erdogdu, Y., Kuruvilla, T., Joe, I.H., Vibrational spectra and first-order molecular hyperpolarizabilities of p-Hydroxybenzaldehyde dimer (2010) J. Mol. Structure, (983), pp. 12-21 
504 |a Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K., Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin (2007) Food Chem., 101 (2), pp. 652-658 
504 |a Ficarra, R., Tommasini, S., Raneri, D., Calabró, M.L., Di Bella, M.R., Rustichelli, C., Gamberini, M.C., Ficarra, P., Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation (2002) J. Pharm. Biomed. Anal., 29 (6), pp. 1005-1014 
504 |a Wulff, G., Steinert, A., Holler, O., Modification of amylose and investigation of its inclusion behavior (1998) Carbohydrate Res., 307 (1-2), pp. 19-31 
520 3 |a The interaction of 4-hydroxy-3-methoxybenzaldehyde (vanillin) and Hylon VII due to the formation of an inclusion complex is studied using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and circular dichroism (CD). The results confirm the close interaction among the different functional groups of vanillin and its host. In addition, a second case study was carried out with an amylose from a different source (100% amylose [APT III]). As a result, remarkable differences were found in the vanillin complexation capability of this amylose, which is only shown in solution by circular dichroism spectroscopy studies through a clear Cotton effect. This finding confirms the value of using CD studies, which shows that, depending on the amylose source, inclusion complexes can be found in solution, or both in solution and the coexisting precipitates, as shown using other techniques, such as X-ray diffraction (XRD) or differential scanning calorimetry (DSC). Moreover, solubility assays and complexation of both starches with iodine and subsequent absorption spectroscopy studies gives more information regarding the possible source of the starch encapsulation capability. Thus, Hylon VII shows higher capacity as vanillin encapsulant than APT III, showing the formation of inclusion complexes both in solution and solid phase, whereas APT III complexes are only perceivable in solution. © 2013 Society for Applied Spectroscopy.  |l eng 
593 |a Instituto de Química Física de Materiales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a AMYLOSE 
690 1 0 |a CIRCULAR DICHROISM (CD) 
690 1 0 |a DIFFERENTIAL SCANNING CALORIMETRY (DSC) 
690 1 0 |a FOURIER TRANSFORMED INFRARED SPECTROSCOPY (FT-IR) 
690 1 0 |a INCLUSION COMPLEX 
690 1 0 |a AMYLOSE 
690 1 0 |a COTTON EFFECTS 
690 1 0 |a ENCAPSULANTS 
690 1 0 |a FOURIER TRANSFORM INFRA RED (FTIR) SPECTROSCOPY 
690 1 0 |a FOURIER TRANSFORMED INFRARED SPECTROSCOPY 
690 1 0 |a INCLUSION COMPLEX 
690 1 0 |a SOLID-PHASE 
690 1 0 |a STARCH ENCAPSULATIONS 
690 1 0 |a CIRCULAR DICHROISM SPECTROSCOPY 
690 1 0 |a CYCLODEXTRINS 
690 1 0 |a DICHROISM 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a FUNCTIONAL GROUPS 
690 1 0 |a STARCH 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a DIFFERENTIAL SCANNING CALORIMETRY 
690 1 0 |a AMYLOSE 
690 1 0 |a BENZALDEHYDE DERIVATIVE 
690 1 0 |a VANILLIN 
690 1 0 |a CHEMISTRY 
690 1 0 |a CIRCULAR DICHROISM 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a DIFFERENTIAL SCANNING CALORIMETRY 
690 1 0 |a INFRARED SPECTROSCOPY 
690 1 0 |a METHODOLOGY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a AMYLOSE 
690 1 0 |a BENZALDEHYDES 
690 1 0 |a CALORIMETRY, DIFFERENTIAL SCANNING 
690 1 0 |a CIRCULAR DICHROISM 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a SPECTROSCOPY, FOURIER TRANSFORM INFRARED 
700 1 |a Bernik, D.L. 
773 0 |d 2013  |g v. 67  |h pp. 884-891  |k n. 8  |p Appl Spectrosc  |x 00037028  |t Applied Spectroscopy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84882377041&doi=10.1366%2f12-06981&partnerID=40&md5=c943e22ee4c5528fc6b23ec4d8497835  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1366/12-06981  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00037028_v67_n8_p884_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00037028_v67_n8_p884_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_00037028_v67_n8_p884_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72344