When size does matter: Organelle size influences the properties of transport mediated by molecular motors

Background Organelle transport is driven by the action of molecular motors. In this work, we studied the dynamics of organelles of different sizes with the aim of understanding the complex relation between organelle motion and microenvironment. Methods We used single particle tracking to obtain traj...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De Rossi, M.C
Otros Autores: Bruno, Luciana, Wolosiuk, A., Despósito, M.A, Levi, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16969caa a22016577a 4500
001 PAPER-11340
003 AR-BaUEN
005 20241101144337.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84881509972 
030 |a BBGSB 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a De Rossi, M.C. 
245 1 5 |a When size does matter: Organelle size influences the properties of transport mediated by molecular motors 
260 |c 2013 
270 1 0 |m Levi, V.; Departamento de Química Biológica, IQUIBICEN-CONICET, Ciudad Universitaria, CP 1428 Ciudad de Buenos Aires, Argentina; email: vlevi12@gmail.com 
504 |a Ishii, Y., Yanagida, T., Single molecule measurments and molecular motors (2003) Molecular Motors, , M. Schliwa, Wiley-VCH Munchen 
504 |a Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: Evidence for cooperation between multiple motors (2006) Biophys. J., 90, pp. 318-327 
504 |a Brunstein, M., Bruno, L., Desposito, M., Levi, V., Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores (2009) Biophys. J., 97, pp. 1548-1557 
504 |a Bruno, L., Echarte, M.M., Levi, V., Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles (2008) Cell Biochem. Biophys., 52, pp. 191-201 
504 |a Levi, V., Gelfand, V.I., Serpinskaya, A.S., Gratton, E., Melanosomes transported by myosin-V in Xenopus melanophores perform slow 35 nm steps (2006) Biophys. J., 90, pp. 7-L9 
504 |a Mallik, R., Gross, S.P., Molecular motors: Strategies to get along (2004) Curr. Biol., 14, pp. 971-R982 
504 |a Vale, R.D., The molecular motor toolbox for intracellular transport (2003) Cell, 112 (4), pp. 467-480. , DOI 10.1016/S0092-8674(03)00111-9 
504 |a Kulic, I.M., Brown, A.E.X., Kim, H., Kural, C., Blehm, B., Selvin, P.R., Nelson, P.C., Gelfand, V., The role of microtubule movement in bidirectional organelle transport (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 10011-10016 
504 |a Semenova, I., Buralov, A., Berardone, N., Zaliapin, I., Slepchenko, B., Svittkina, T., Kashina, A., Rodionov, V., Actin dynamics is essential for myosin-based transport of membrane organelles (2008) Curr. Biol., 18, pp. 1581-1586 
504 |a Kural, C., Serpinskaya, A.S., Chou, Y.-H., Goldman, R.D., Gelfand, V.I., Selvin, P.R., Tracking melanosomes inside a cell to study molecular motors and their interaction (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (13), pp. 5378-5382. , DOI 10.1073/pnas.0700145104 
504 |a Chang, L., Barlan, K., Chou, Y.H., Grin, B., Lakonishok, M., Serpinskaya, A.S., Shumaker, D.K., Goldman, R.D., The dynamic properties of intermediate filaments during organelle transport (2009) J. Cell Sci., 122, pp. 2914-2923 
504 |a Nekrasova, O.E., Mendez, M.G., Chernoivanenko, I.S., Tyurin-Kuzmin, P.A., Kuczmarski, E.R., Gelfand, V.I., Goldman, R.D., Minin, A.A., Vimentin intermediate filaments modulate the motility of mitochondria (2011) Mol. Biol. Cell, 22, pp. 2282-2289 
504 |a Potokar, M., Kreft, M., Li, L., Andersson, J.D., Pangrsic, T., Chowdhury, H.H., Pekny, M., Zorec, R., Cytoskeleton and vesicle mobility in astrocytes (2007) Traffic, 8 (1), pp. 12-20. , DOI 10.1111/j.1600-0854.2006.00509.x 
504 |a Nascimento, A.A., Roland, J.T., Gelfand, V.I., Pigment Cells: A Model for the Study of Organelle Transport (2003) Annual Review of Cell and Developmental Biology, 19, pp. 469-491. , DOI 10.1146/annurev.cellbio.19.111401.092937 
504 |a Rozdzial, M.M., Haimo, L.T., Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation (1986) Cell, 47, pp. 1061-1070 
504 |a Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., Tsien, R.Y., Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: Direct measurement by fluorescence ratio imaging (1992) J. Cell Biol., 117, pp. 57-72 
504 |a Nilsson, H., Wallin, M., Evidence for several roles of dynein in pigment transport in melanophores (1997) Cell Motility and the Cytoskeleton, 38 (4), pp. 397-409. , DOI 10.1002/(SICI)1097-0169(1997)38:4<397::AID-CM9>3.0.CO;2-0 
504 |a Tuma, M.C., Zill, A., Le Bot, N., Vernos, I., Gelfand, V., Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores (1998) Journal of Cell Biology, 143 (6), pp. 1547-1558. , DOI 10.1083/jcb.143.6.1547 
504 |a Rogers, S.L., Karcher, R.L., Roland, J.T., Minin, A.A., Gelfand, S.W.V.I., Regulation of melanosome movement in the cell cycle by reversible association with myosin v (1999) J. Cell Sci., 146, pp. 1265-1276 
504 |a Rogers, S.L., Tint, I.S., Fanapour, P.C., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 3720-3725 
504 |a Gross, S.P., Carolina Tuma, M., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I., Interactions and regulation of molecular motors in Xenopus melanophores (2002) Journal of Cell Biology, 156 (5), pp. 855-865. , DOI 10.1083/jcb.200105055 
504 |a Rogers, S.L., Tint, I.S., Gelfand, V.I., In vitro motility assay for melanophore pigment organelles (1998) Methods in Enzymology, 298, pp. 361-372. , DOI 10.1016/S0076-6879(98)98032-6 
504 |a Turkevich, J., Cooper Stevenson, P., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold (1951) Discuss. Faraday Soc., 11, pp. 55-75 
504 |a Dodes Traian, M.M., Gonzalez Flecha, F.L., Levi, V., Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope (2012) J. Lipid Res., 53, pp. 609-616 
504 |a Saxton, M.J., Jacobson, K., Single-particle tracking: Applications to membrane dynamics (1997) Annual Review of Biophysics and Biomolecular Structure, 26, pp. 373-399. , DOI 10.1146/annurev.biophys.26.1.373 
504 |a Wayne, R., (2009) Light and Video Microscopy, pp. 35-65. , Elsevier Inc. Amsterdam 
504 |a Levi, V., Gratton, E., Exploring dynamics in living cells by tracking single particles (2007) Cell Biochemistry and Biophysics, 48 (1), pp. 1-15. , DOI 10.1007/s12013-007-0010-0 
504 |a Robert, D., Aubertin, K., Bacri, J.C., Wilhelm, C., Magnetic nanomanipulations inside living cells compared with passive tracking of nanoprobes to get consensus for intracellular mechanics (2012) Phys. Rev. e Stat. Nonlinear Soft Matter Phys., 85, p. 011905 
504 |a Bruno, L., Levi, V., Brunstein, M., Desposito, M.A., Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors (2009) Phys. Rev. e Stat. Nonlinear Soft Matter Phys., 80, p. 011912 
504 |a Salman, H., Gil, Y., Granek, R., Elbaum, M., Microtubules, motor proteins, and anomalous mean squared displacements (2002) Chem. Phys., 284, pp. 389-397 
504 |a Caspi, A., Granek, R., Elbaum, M., Diffusion and directed motion in cellular transport (2002) Phys. Rev. e Stat. Nonlinear Soft Matter Phys., 66, p. 011916 
504 |a Gal, N., Weihs, D., Experimental evidence of strong anomalous diffusion in living cells (2010) Phys. Rev. e Stat. Nonlinear Soft Matter Phys., 81, p. 020903 
504 |a Wilhelm, C., Out-of-equilibrium microrheology inside living cells (2008) Phys. Rev. Lett., 101, p. 028101 
504 |a Slepchenko, B.M., Semenova, I., Zaliapin, I., Rodionov, V., Switching of membrane organelles between cytoskeletal transport systems is determined by regulation of the microtubule-based transport (2007) Journal of Cell Biology, 179 (4), pp. 635-641. , http://www.jcb.org/cgi/reprint/179/4/635, DOI 10.1083/jcb.200705146 
504 |a Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., Dynein-mediated cargo transport in vivo. A switch controls travel distance (2000) J. Cell Biol., 148, pp. 945-956 
504 |a Snezhko, A., Barlan, K., Aranson, I.S., Gelfand, V.I., Statistics of active transport in Xenopus melanophores cells (2010) Biophys. J., 99, pp. 3216-3223 
504 |a Aspengren, S., New insights into melanosome transport in vertebrate pigment cells (2009) Int. J. Cell Mol. Biol., 272, pp. 245-302 
504 |a Langford, G.M., Actin- and microtubule-dependent organelle motors: Interrelationships between the two motility systems (1995) Curr. Opin. Cell Biol., 7, pp. 82-88 
504 |a Beeg, J., Klumpp, S., Dimova, R., Gracia, R.S., Unger, E., Lipowsky, R., Transport of beads by several kinesin motors (2008) Biophys. J., 94, pp. 532-541 
504 |a Muller, M.J., Klumpp, S., Lipowsky, R., Bidirectional transport by molecular motors: Enhanced processivity and response to external forces (2010) Biophys. J., 98, pp. 2610-2618 
504 |a Mallik, R., Petrov, D., Lex, S.A., King, S.J., Gross, S.P., Building complexity: An in vitro study of cytoplasmic dynein with in vivo implications (2005) Current Biology, 15 (23), pp. 2075-2085. , DOI 10.1016/j.cub.2005.10.039, PII S0960982205012790 
504 |a Vershinin, M., Carter, B.C., Razafsky, D.S., King, S.J., Gross, S.P., Multiple-motor based transport and its regulation by Tau (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (1), pp. 87-92. , DOI 10.1073/pnas.0607919104 
504 |a Schroeder III, H.W., Mitchell, C., Shuman, H., Holzbaur, E.L., Goldman, Y.E., Motor number controls cargo switching at actin-microtubule intersections in vitro (2010) Curr. Biol., 20, pp. 687-696 
504 |a Schroeder III, H.W., Hendricks, A.G., Ikeda, K., Shuman, H., Rodionov, V., Ikebe, M., Goldman, Y.E., Holzbaur, E.L., Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections (2012) Biophys. J., 103, pp. 48-58 
504 |a Hendricks, A.G., Perlson, E., Ross, J.L., Schroeder III, H.W., Tokito, M., Holzbaur, E.L., Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport (2010) Curr. Biol., 20, pp. 697-702 
504 |a Soppina, V., Rai, A.K., Ramaiya, A.J., Barak, P., Mallik, R., Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 19381-19386 
504 |a Hendricks, A.G., Holzbaur, E.L., Goldman, Y.E., Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 18447-18452 
504 |a Snider, J., Lin, F., Zahedi, N., Rodionovt, V., Yu, C.C., Gross, S.P., Intracellular actin-based transport: How far you go depends on how often you switch (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (36), pp. 13204-13209. , DOI 10.1073/pnas.0403092101 
504 |a Muthukrishnan, G., Zhang, Y., Shastry, S., Hancock, W.O., The processivity of kinesin-2 motors suggests diminished front-head gating (2009) Curr. Biol., 19, pp. 442-447 
506 |2 openaire  |e Política editorial 
520 3 |a Background Organelle transport is driven by the action of molecular motors. In this work, we studied the dynamics of organelles of different sizes with the aim of understanding the complex relation between organelle motion and microenvironment. Methods We used single particle tracking to obtain trajectories of melanosomes (pigmented organelles in Xenopus laevis melanophores). In response to certain hormones, melanosomes disperse in the cytoplasm or aggregate in the perinuclear region by the combined action of microtubule and actin motors. Results and conclusions Melanosome trajectories followed an anomalous diffusion model in which the anomalous diffusion exponent (α) provided information regarding the trajectories' topography and thus of the processes causing it. During aggregation, the directionality of big organelles was higher than that of small organelles and did not depend on the presence of either actin or intermediate filaments (IF). Depolymerization of IF significantly reduced α values of small organelles during aggregation but slightly affect their directionality during dispersion. General significance Our results could be interpreted considering that the number of copies of active motors increases with organelle size. Transport of big organelles was not influenced by actin or IF during aggregation showing that these organelles are moved processively by the collective action of dynein motors. Also, we found that intermediate filaments enhance the directionality of small organelles suggesting that this network keeps organelles close to the tracks allowing their efficient reattachment. The higher directionality of small organelles during dispersion could be explained considering the better performance of kinesin-2 vs. dynein at the single molecule level. © 2013 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020110100074 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2008-1104 
536 |a Detalles de la financiación: We are grateful to Martín Dodes Traian for kindly helping us with C-laurdan imaging and Lorena Benseñor for helpful discussion. This research was supported by ANPCyT ( PICT 2008-1104 ) and UBACyT ( 20020110100074 ). LB, MAD, AW and VL are members of CONICET. Appendix A 
593 |a Departamento de Química Biológica, IQUIBICEN-CONICET, Ciudad Universitaria, CP 1428 Ciudad de Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CP 1428 Ciudad de Buenos Aires, Argentina 
593 |a Gerencia de Quimica - Centro Atomico Constituyentes - Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 San-Martín, Buenos Aires, Argentina 
690 1 0 |a INTRACELLULAR TRANSPORT 
690 1 0 |a MOLECULAR MOTORS 
690 1 0 |a ORGANELLE TRAFFICKING 
690 1 0 |a SINGLE PARTICLE TRACKING 
690 1 0 |a XENOPUS LAEVIS MELANOPHORES- 
690 1 0 |a ACTIN 
690 1 0 |a MOLECULAR MOTOR 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CELL AGGREGATION 
690 1 0 |a CELL TRACKING 
690 1 0 |a CELL TRANSPORT 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DEPOLYMERIZATION 
690 1 0 |a DIFFUSION 
690 1 0 |a DISPERSION 
690 1 0 |a INTERMEDIATE FILAMENT 
690 1 0 |a MELANOSOME 
690 1 0 |a NONHUMAN 
690 1 0 |a ORGANELLE SIZE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a XENOPUS LAEVIS 
690 1 0 |a ANOMALOUS DIFFUSION EXPONENT 
690 1 0 |a DLS 
690 1 0 |a DYNAMIC LIGHT SCATTERING 
690 1 0 |a FE-SEM 
690 1 0 |a FIELD EMISSION-SCANNING ELECTRON MICROSCOPY 
690 1 0 |a IF 
690 1 0 |a INTERMEDIATE FILAMENTS 
690 1 0 |a INTRACELLULAR TRANSPORT 
690 1 0 |a MEAN SQUARE DISPLACEMENT 
690 1 0 |a MOLECULAR MOTORS 
690 1 0 |a MSD 
690 1 0 |a OPTICAL RADIUS 
690 1 0 |a OR 
690 1 0 |a ORGANELLE TRAFFICKING 
690 1 0 |a SINGLE PARTICLE TRACKING 
690 1 0 |a XENOPUS LAEVIS MELANOPHORES 
690 1 0 |a Α 
690 1 0 |a ACTINS 
690 1 0 |a ANIMALS 
690 1 0 |a BIOLOGICAL TRANSPORT 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a CELLULAR MICROENVIRONMENT 
690 1 0 |a DIFFUSION 
690 1 0 |a DYNEINS 
690 1 0 |a INTERMEDIATE FILAMENTS 
690 1 0 |a MELANOPHORES 
690 1 0 |a MELANOSOMES 
690 1 0 |a MICROTUBULES 
690 1 0 |a MOLECULAR MOTOR PROTEINS 
690 1 0 |a ORGANELLE SIZE 
690 1 0 |a ORGANELLES 
690 1 0 |a STRUCTURE-ACTIVITY RELATIONSHIP 
690 1 0 |a XENOPUS LAEVIS 
700 1 |a Bruno, Luciana 
700 1 |a Wolosiuk, A. 
700 1 |a Despósito, M.A. 
700 1 |a Levi, V. 
773 0 |d 2013  |g v. 1830  |h pp. 5095-5103  |k n. 11  |p Biochim. Biophys. Acta Gen. Subj.  |x 03044165  |w (AR-BaUEN)CENRE-2260  |t Biochimica et Biophysica Acta - General Subjects 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881509972&doi=10.1016%2fj.bbagen.2013.06.043&partnerID=40&md5=60cc1ff78111b96ad590bd7f03bd5979  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bbagen.2013.06.043  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03044165_v1830_n11_p5095_DeRossi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03044165_v1830_n11_p5095_DeRossi  |y Registro en la Biblioteca Digital 
961 |a paper_03044165_v1830_n11_p5095_DeRossi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72293