Two-photon optical interrogation of individual dendritic spines with caged dopamine

We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Araya, R.
Otros Autores: Andino-Pavlovsky, V., Yuste, R., Etchenique, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09994caa a22011537a 4500
001 PAPER-11339
003 AR-BaUEN
005 20230518204128.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84883254477 
024 7 |2 cas  |a bipyridine, 37275-48-2; calcium, 14092-94-5, 7440-70-2; dopamine, 51-61-6, 62-31-7; ruthenium, 7440-18-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ACNCD 
100 1 |a Araya, R. 
245 1 0 |a Two-photon optical interrogation of individual dendritic spines with caged dopamine 
260 |c 2013 
270 1 0 |m Yuste, R.; Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, United States 
506 |2 openaire  |e Política editorial 
504 |a Schneier, F.R., Liebowitz, M.R., Abi-Dargham, A., Zea-Ponce, Y., Lin, S.H., Laruelle, M., Low dopamine D(2) receptor binding potential in social phobia (2000) Am. J. Psychiatry, 157, p. 457 
504 |a Mink, J.W., Neurobiology of basal ganglia and Tourette syndrome: Basal ganglia circuits and thalamocortical outputs (2006) Adv. Neurol., 99, pp. 89-98 
504 |a Beaulieu, J.M., Gainetdinov, R.R., The physiology, signaling, and pharmacology of dopamine receptors (2011) Pharmacol. Rev, 63, pp. 182-217 
504 |a Eyles, D., Feldon, J., Meyer, U., Schizophrenia: Do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models (2012) Transl. Psychiatry, 2, p. 81 
504 |a Adnet, P., Lestavel, P., Krivosic-Horber, R., Neuroleptic malignant syndrome (2000) Br. J. Anaesthesia, 85, pp. 129-135 
504 |a Swanson, J.M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G.A., Volkow, N., Taylor, E., Wadhwa, P.D., Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis (2007) Neuropsychol. Rev., 17, pp. 39-59 
504 |a Gizer, I.R., Ficks, C., Waldman, I.D., Candidate gene studies of ADHD: A meta-analytic review (2009) Hum. Genet., 126, pp. 51-90 
504 |a Kienast, T., Heinz, A., Dopamine and the diseased brain (2006) CNS Neurol. Disord.: Drug Targets, 5, pp. 109-131 
504 |a Gerfen, C.R., Molecular effects of dopamine on striatal-projection pathways (2000) Trends Neurosci., 23, pp. 64-70 
504 |a Campanella, G., Roy, M., Barbeau, A., Drugs affecting movement disorders (1987) Annu. Rev. Pharmacol. Toxicol., 27, pp. 113-136 
504 |a Williams, G.V., Goldman-Rakic, P.S., Modulation of memory fields by dopamine D1 receptors in prefrontal cortex (1995) Nature, 376, pp. 572-575 
504 |a Zahrt, J., Taylor, J.R., Mathew, R.G., Arnsten, A.F., Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance (1997) J. Neurosci., 17, pp. 8528-8535 
504 |a Self, D.W., Barnhart, W.J., Lehman, D.A., Nestler, E.J., Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists (1996) Science, 271, pp. 1586-1589 
504 |a Smith-Roe, S.L., Kelley, A.E., Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning (2000) J. Neurosci., 20, pp. 7737-7742 
504 |a Girault, J.A., Greengard, P., The neurobiology of dopamine signaling (2004) Arch. Neurol., 61, pp. 641-644 
504 |a Denk, W., Strickler, J.H., Webb, W.W., Two-photon laser scanning fluorescence microscopy (1990) Science, 248, pp. 73-76 
504 |a Araya, R., Eisenthal, K.B., Yuste, R., Dendritic spines linearize the summation of excitatory potentials (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 18799-18804 
504 |a Araya, R., Jiang, J., Eisenthal, K.B., Yuste, R., The spine neck filters membrane potentials (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 17961-17966 
504 |a Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., Kasai, H., Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons (2001) Nat. Neurosci., 4, pp. 1086-1092 
504 |a Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., Kasai, H., Structural basis of long-term potentiation in single dendritic spines (2004) Nature, 429, pp. 761-766 
504 |a Zayat, L., Salierno, M., Etchenique, R., Ruthenium(II) bipyridyl complexes as photolabile caging groups for amines (2006) Inorg. Chem., 45, pp. 1728-1731 
504 |a Zayat, L., Noval, M.G., Campi, J., Calero, C.I., Calvo, D.J., Etchenique, R., A new inorganic photolabile protecting group for highly efficient visible light GABA uncaging (2007) ChemBioChem, 8, pp. 2035-2038 
504 |a Salierno, M., Marceca, E., Peterka, D.S., Yuste, R., Etchenique, R., A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes (2010) J. Inorg. Biochem., 104, pp. 418-422 
504 |a Pinnick, D.V., Durham, B., Photosubstitution Reactions of Ru(bpy)2XYn + Complexes (1984) Inorg. Chem., 23, pp. 1440-1445 
504 |a Lezcano, N., Bergson, C., D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons (2002) J. Neurophysiol., 87, pp. 2167-2175 
504 |a Smiley, J.F., Levey, A.I., Ciliax, B.J., Goldman-Rakic, P.S., D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 5720-5724 
504 |a Bergson, C., Mrzljak, L., Smiley, J.F., Pappy, M., Levenson, R., Goldman-Rakic, P.S., Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain (1995) J. Neurosci., 15, pp. 7821-7836 
504 |a Yung, K.K., Bolam, J.P., Smith, A.D., Hersch, S.M., Ciliax, B.J., Levey, A.I., Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy (1995) Neuroscience, 65, pp. 709-730 
504 |a Bordelon-Glausier, J.R., Khan, Z.U., Muly, E.C., Quantification of D1 and D5 dopamine receptor localization in layers I, III, and v of Macaca mulatta prefrontal cortical area 9: Coexpression in dendritic spines and axon terminals (2008) J. Comp. Neurol., 508, pp. 893-905 
504 |a Bourne, J.A., SCH 23390: The first selective dopamine D-1-like receptor antagonist (2001) CNS Drug Rev., 7, pp. 399-414 
504 |a Rotaru, D.C., Lewis, D.A., Gonzalez-Burgos, G., Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons (2007) J. Physiol., 581, pp. 981-1000 
520 3 |a We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution. © 2013 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: National Eye Institute, NEI 
536 |a Detalles de la financiación: National Institute on Drug Abuse, NIDA 
536 |a Detalles de la financiación: National Institute of Neurological Disorders and Stroke, NINDS 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina 
593 |a Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, United States 
593 |a Département de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada 
690 1 0 |a CAGED COMPOUND 
690 1 0 |a DOPAMINE 
690 1 0 |a RUTHENIUM 
690 1 0 |a TWO-PHOTON 
690 1 0 |a BIPYRIDINE 
690 1 0 |a CALCIUM 
690 1 0 |a DOPAMINE 
690 1 0 |a DOPAMINE RECEPTOR 
690 1 0 |a RUTHENIUM 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a BRAIN SLICE 
690 1 0 |a DENDRITIC SPINE 
690 1 0 |a FLUORESCENCE IMAGING 
690 1 0 |a INFRARED PHOTOGRAPHY 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PHOTON 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a QUANTUM YIELD 
690 1 0 |a ANIMALS 
690 1 0 |a CALCIUM ISOTOPES 
690 1 0 |a DENDRITIC SPINES 
690 1 0 |a DOPAMINE 
690 1 0 |a MICE 
690 1 0 |a PHOTOLYSIS 
690 1 0 |a PHOTONS 
690 1 0 |a PREFRONTAL CORTEX 
690 1 0 |a RECEPTORS, DOPAMINE 
690 1 0 |a RUTHENIUM 
700 1 |a Andino-Pavlovsky, V. 
700 1 |a Yuste, R. 
700 1 |a Etchenique, R. 
773 0 |d 2013  |g v. 4  |h pp. 1163-1167  |k n. 8  |p ACS Chem. Neurosci.  |x 19487193  |w (AR-BaUEN)CENRE-7405  |t ACS Chemical Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883254477&doi=10.1021%2fcn4000692&partnerID=40&md5=a30becc0d359bf0f1629e8e95b2b9dda  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/cn4000692  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19487193_v4_n8_p1163_Araya  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487193_v4_n8_p1163_Araya  |y Registro en la Biblioteca Digital 
961 |a paper_19487193_v4_n8_p1163_Araya  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72292