The use of alternative polyadenylation sites renders integrin β1 (Itgb1) mRNA isoforms with differential stability during mammary gland development

Integrins are heterodimeric cell-surface adhesion receptors that play a critical role in tissue development. Characterization of the full-length mRNA encoding the β1 subunit (Itgb1) revealed an alternative functional cleavage and polyadenylation site that yields a new Itgb1 mRNA isoform 578 bp short...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Naipauer, J.
Otros Autores: Gattelli, A., Degese, M.S, Slomiansky, V., Wertheimer, E., Lamarre, J., Castilla, L., Abba, M., Kordon, E.C, Coso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13608caa a22015617a 4500
001 PAPER-11311
003 AR-BaUEN
005 20230518204126.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84881503610 
024 7 |2 cas  |a caspase 3, 169592-56-7; dactinomycin, 1402-38-6, 1402-58-0, 50-76-0; Antigens, CD29; RNA Isoforms; RNA, Messenger; RNA, Small Interfering; Recombinant Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BIJOA 
100 1 |a Naipauer, J. 
245 1 4 |a The use of alternative polyadenylation sites renders integrin β1 (Itgb1) mRNA isoforms with differential stability during mammary gland development 
260 |c 2013 
270 1 0 |m Kordon, E.C.; Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA), Buenos Aires C1428EHA, Argentina; email: ekordon@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Schwartz, M.A., Integrins, oncogenes, and anchorage independence (1997) J. Cell Biol., 139, pp. 575-578 
504 |a Hynes, R.O., Integrins: Bidirectional, allosteric signaling machines (2002) Cell, 110, pp. 673-687 
504 |a Brakebusch, C., Fassler, R., β1 Integrin function in vivo: Adhesion, migration and more (2005) Cancer Metastasis Rev., 24, pp. 403-411 
504 |a Taddei, I., Faraldo, M.M., Teuliere, J., Deugnier, M.A., Thiery, J.P., Glukhova, M.A., Integrins in mammary gland development and differentiation of mammary epithelium (2003) J. Mammary Gland Biol. Neoplasia, 8, pp. 383-394 
504 |a Anderson, R., Fassler, R., Georges-Labouesse, E., Hynes, R.O., Bader, B.L., Kreidberg, J.A., Schaible, K., Wylie, C., Mouse primordial germ cells lacking η1 integrins enter the germline but fail to migrate normally to the gonads (1999) Development, 126, pp. 1655-1664 
504 |a Fassler, R., Meyer, M., Consequences of lack of β1 integrin gene expression in mice (1995) Genes Dev., 9, pp. 1896-1908 
504 |a Stephens, L.E., Sutherland, A.E., Klimanskaya, I.V., Andrieux, A., Meneses, J., Pedersen, R.A., Damsky, C.H., Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality (1995) Genes Dev., 9, pp. 1883-1895 
504 |a Klinowska, T.C., Soriano, J.V., Edwards, G.M., Oliver, J.M., Valentijn, A.J., Montesano, R., Streuli, C.H., Laminin and β1 integrins are crucial for normal mammary gland development in the mouse (1999) Dev. Biol., 215, pp. 13-32 
504 |a Li, N., Zhang, Y., Naylor, M.J., Schatzmann, F., Maurer, F., Wintermantel, T., Schuetz, G., Hynes, N.E., β1 Integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli (2005) EMBO J., 24, pp. 1942-1953 
504 |a Naylor, M.J., Li, N., Cheung, J., Lowe, E.T., Lambert, E., Marlow, R., Wang, P., Schuetz, G., Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation (2005) J. Cell Biol., 171, pp. 717-728 
504 |a Edwalds-Gilbert, G., Veraldi, K.L., Milcarek, C., Alternative poly(A) site selection in complex transcription units: Means to an end? (1997) Nucleic Acids Res., 25, pp. 2547-2561 
504 |a Chabot, B., Directing alternative splicing: Cast and scenarios (1996) Trends Genet., 12, pp. 472-478 
504 |a Garneau, N.L., Wilusz, J., Wilusz, C.J., The highways and byways of mRNA decay (2007) Nat. Rev. Mol. Cell Biol., 2, pp. 113-126 
504 |a Hynes, N.E., Taverna, D., Harwerth, I.M., Ciardiello, F., Salomon, D.S., Yamamoto, T., Groner, B., Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the β-casein gene in mouse mammary epithelial cells (1990) Mol. Cell. Biol., 10, pp. 4027-4034 
504 |a Quaglino, A., Salierno, M., Pellegrotti, J., Rubinstein, N., Kordon, E.C., Mechanical strain induces involution-associated events in mammary epithelial cells (2009) BMC Cell Biol., 10, p. 55 
504 |a You, Y., Chen, C.Y., Shyu, A.B., U-rich sequence-binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3 untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation (1992) Mol. Cell. Biol., 12, pp. 2931-2940 
504 |a Ji, Z., Luo, W., Li, W., Hoque, M., Pan, Z., Zhao, Y., Tian, B., Transcriptional activity regulates alternative cleavage and polyadenylation (2011) Mol. Syst. Biol., 7, p. 534 
504 |a Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Et Al., T.M., TM4: A free, open-source system for microarray data management and analysis (2003) Biotechniques, 34, pp. 374-378 
504 |a Gattelli, A., Zimberlin, M.N., Meiss, R.P., Castilla, L.H., Kordon, E.C., Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines (2006) J. Virol., 80, pp. 11409-11415 
504 |a Soulier, S., Vilotte, J.-L., L'huillier, P.J., Mercier, J.-C., Developmental regulation of murine integrin pl subunit- and Hsc73-encoding genes in mammary gland: Sequence of a new mouse Hsc73 cDNA (1996) Gene, 172, pp. 285-289 
504 |a Brennan, C.M., Steitz, J.A., HuR and mRNA stability (2001) Cell. Mol. Life Sci., 58, pp. 266-277 
504 |a Ji, Z., Lee, J.Y., Pan, Z., Jiang, B., Tian, B., Progressive lengthening of 3untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 7028-7033 
504 |a Pontier, S.M., Muller, W.J., Integrins in mammary-stem-cell biology and breast cancer progression: A role in cancer stem cells? (2009) J. Cell Sci., 122, pp. 207-214 
504 |a Taddei, I., Deugnier, M.A., Faraldo, M.M., Petit, V., Bouvard, D., Medina, D., Fassler, R., Glukhova, M.A., β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells (2008) Nat. Cell Biol., 10, pp. 716-722 
504 |a McSherry, E.A., McGee, S.F., Jirstrom, K., Doyle, E.M., Brennan, D.J., Landberg, G., Dervan, P.A., Gallagher, W.M., JAM-A expression positively correlates with poor prognosis in breast cancer patients (2009) Int. J. Cancer, 125, pp. 1343-1351 
504 |a Huang, R.Y., Ip, M.M., Differential expression of integrin mRNAs and proteins during normal rat mammary gland development and in carcinogenesis (2001) Cell Tissue Res., 303, pp. 69-80 
504 |a Mukherjee, N., Lager, P.J., Friedersdorf, M.B., Thompson, M.A., Keene, J.D., Coordinated posttranscriptional mRNA population dynamics during T-cell activation (2009) Mol. Syst. Biol., 5, p. 288 
504 |a Yan, W., Zhang, Y., Zhang, J., Cho, S.-J., Chen, X., HuR is necessary for mammary epithelial cell proliferation and polarity at least in part via DNp63 (2012) PLoS ONE, 7, p. 45336 
504 |a Kriegel, A.J., Liu, Y., Fang, Y., Ding, X., Liang, M., The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury (2012) Physiol. Genomics, 44, pp. 237-244 
504 |a Li, G., Luna, C., Qiu, J., Epstein, D.L., Gonzalez, P., Targeting of integrin β1 and kinesin 2α by microRNA 183 (2010) J. Biol. Chem., 285, pp. 5461-5471 
504 |a Li, K.K., Pang, J.C., Ching, A.K., Wong, C.K., Kong, X., Wang, Y., Zhou, L., Ng, H.K., MiR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1 (2009) Hum. Pathol., 40, pp. 1234-1243 
504 |a Avril-Sassen, S., Goldstein, L.D., Stingl, J., Blenkiron, C., Le Quesne, J., Spiteri, I., Karagavriilidou, K., Caldas, C., Characterisation of microRNA expression in post-natal mouse mammary gland development (2009) BMC Genomics, 10, p. 548 
504 |a Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N., Dixon, D.A., The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2 (2012) Mol. Cancer Res., 10, pp. 167-180 
504 |a Tian, B., Hu, J., Zhang, H., Lutz, C.S., A large-scale analysis of mRNA polyadenylation of human and mouse genes (2005) Nucleic Acids Res., 33, pp. 201-212 
504 |a Yang, S.H., Sharrocks, A.D., Whitmarsh, A.J., MAP kinase signalling cascades and transcriptional regulation (2013) Gene, 513, pp. 1-13 
504 |a Kornblihtt, A.R., Coupling transcription and alternative splicing (2007) Adv. Exp. Med. Biol., 623, pp. 175-189 
504 |a Alonso, C.R., A complex 'mRNA degradation code' controls gene expression during animal development (2012) Trends Genet., 28, pp. 78-88 
520 3 |a Integrins are heterodimeric cell-surface adhesion receptors that play a critical role in tissue development. Characterization of the full-length mRNA encoding the β1 subunit (Itgb1) revealed an alternative functional cleavage and polyadenylation site that yields a new Itgb1 mRNA isoform 578 bp shorter than that previously reported. Using a variety of experimental and bioinformatic approaches, we found that the two Itgb1 isoforms are expressed at different levels in a variety of mouse tissues, including the mammary gland, where they are differentially regulated at successive developmental stages. The longer mRNA species is prevelant during lactation, whereas the shorter is induced after weaning. In 3D cultures, where expression of integrin β1 protein is required for normal formation of acini, experimental blockade of the longer isoform induced enhanced expression of the shorter species which allowed normal morphological mammary differentiation. The short isoform lacks AU-rich motifs and miRNA target sequences that are potentially implicated in the regulation of mRNA stability and translation efficiency. We further determined that the AU-binding protein HuR appears to selectively stabilize the longer isoform in the mammary gland. In summary, the results of the present study identify a newregulatory instance involved in the fine-tuning of Itgb1 expression during mammary gland development and function. © 2013 Biochemical Society.  |l eng 
593 |a Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA), Buenos Aires C1428EHA, Argentina 
593 |a IFIBYNE-CONICET, Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina 
593 |a CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina 
593 |a DBMS, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada 
593 |a Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, United States 
593 |a CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de la Plata (UNLP), Buenos Aires 1900, Argentina 
690 1 0 |a ALTERNATIVE POLYADENYLATION 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HUR 
690 1 0 |a ITGB1 
690 1 0 |a MAMMARY GLAND 
690 1 0 |a MRNA 
690 1 0 |a BETA1 INTEGRIN 
690 1 0 |a CASPASE 3 
690 1 0 |a DACTINOMYCIN 
690 1 0 |a HUR PROTEIN 
690 1 0 |a MICRORNA 
690 1 0 |a RNA ISOFORM 
690 1 0 |a SHORT HAIRPIN RNA 
690 1 0 |a ARTICLE 
690 1 0 |a BREAST DEVELOPMENT 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CONSENSUS SEQUENCE 
690 1 0 |a DIFFERENTIATION 
690 1 0 |a ELECTROPHORETIC MOBILITY 
690 1 0 |a HUMAN 
690 1 0 |a LACTATION 
690 1 0 |a NONHUMAN 
690 1 0 |a POLYADENYLATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROMOTER REGION 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN CLEAVAGE 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN STABILITY 
690 1 0 |a RNA TRANSCRIPTION 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIGENS, CD29 
690 1 0 |a CELL CULTURE TECHNIQUES 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL LINE 
690 1 0 |a DATA MINING 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION, DEVELOPMENTAL 
690 1 0 |a LACTATION 
690 1 0 |a MAMMARY GLANDS, ANIMAL 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED BALB C 
690 1 0 |a POLYADENYLATION 
690 1 0 |a PREGNANCY 
690 1 0 |a RECOMBINANT PROTEINS 
690 1 0 |a RNA ISOFORMS 
690 1 0 |a RNA PROCESSING, POST-TRANSCRIPTIONAL 
690 1 0 |a RNA STABILITY 
690 1 0 |a RNA, MESSENGER 
690 1 0 |a RNA, SMALL INTERFERING 
690 1 0 |a SPECIFIC PATHOGEN-FREE ORGANISMS 
690 1 0 |a WEANING 
700 1 |a Gattelli, A. 
700 1 |a Degese, M.S. 
700 1 |a Slomiansky, V. 
700 1 |a Wertheimer, E. 
700 1 |a Lamarre, J. 
700 1 |a Castilla, L. 
700 1 |a Abba, M. 
700 1 |a Kordon, E.C. 
700 1 |a Coso, O.A. 
773 0 |d 2013  |g v. 454  |h pp. 345-357  |k n. 2  |p Biochem. J.  |x 02646021  |w (AR-BaUEN)CENRE-205  |t Biochemical Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881503610&doi=10.1042%2fBJ20130062&partnerID=40&md5=2dc726b5dfb2282f3b49fc034abf9083  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1042/BJ20130062  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02646021_v454_n2_p345_Naipauer  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02646021_v454_n2_p345_Naipauer  |y Registro en la Biblioteca Digital 
961 |a paper_02646021_v454_n2_p345_Naipauer  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72264