Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower oil Emulsions

The aim of the present work was to investigate the effect of aqueous phase composition on the stability of emulsions formulated with 10 wt% sunflower oil as fat phase. Aqueous phase was formulated with 0.5, 2, or 5 wt% sodium caseinate, or sodium caseinate with the addition of two different hydrocol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Huck-Iriart, C.
Otros Autores: Pizones Ruiz-Henestrosa, V.M, Candal, R.J, Herrera, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11764caa a22010577a 4500
001 PAPER-11292
003 AR-BaUEN
005 20230518204125.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84875198643 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Huck-Iriart, C. 
245 1 0 |a Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower oil Emulsions 
260 |c 2013 
270 1 0 |m Herrera, M. L.Ciudad Univ., Pabellon de Indus., Intendente Guiraldes S/N, 1428 Buenos Aires, Argentina; email: lidia@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alvarez Cerimedo, M.-S., Huck-Iriart, C., Candal, R.-J., Herrera, M.-L., Stability of emulsions formulated with high concentrations of sodium caseinate and trehalose (2010) Food Research International, 43 (5), pp. 1482-1493 
504 |a Belyakova, L.-E., Antipova, A.-S., Semenova, M.-G., Dickinson, E., Matia Merino, L., Tsapkina, E.-N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: Relationship to protein gelation (2003) Colloids and Surfaces. B, Biointerfaces, 31 (1), pp. 31-46 
504 |a Bordes, C., García, F., Frances, C., Biscans, B., Snabre, P., On line optical investigation of concentrated dispersions in precipitation and grinding processes (2001) Kona, 19, pp. 94-108 
504 |a Braga, A.-L.-M., Cunha, R.-L., The effects of xanthan conformation and sucrose concentration on the rheological properties of acidified sodium caseinate xanthan gels (2004) Food Hydrocolloids, 18 (6), pp. 977-986 
504 |a Brent, S.-M., Stabilization of bubbles and foams (2007) Current Opinion in Colloid & Interface Science, 12 (4-5), pp. 232-241 
504 |a Cerdeira, M., Palazolo, G.-G., Candal, R.-J., Herrera, M.-L., Factors affecting initial retention of a microencapsulated sunflower seed oil/milk fat fraction blend (2007) Journal of the American Oil Chemists' Society, 84 (6), pp. 523-531 
504 |a Chauvierre, C., Labarre, D., Couvreur, P., Vauthier, C., A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties (2004) Colloid & Polymer Science, 282 (10), pp. 1097-1104 
504 |a Dickinson, E., Structure formation in casein-based gels, foams, and emulsions (2006) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288 (1-3), pp. 3-11 
504 |a Dickinson, E., Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions (2008) Soft Matter, 4 (5), pp. 932-942 
504 |a Dickinson, E., Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures (2011) Food Hydrocolloids, 25 (8), pp. 1966-1983 
504 |a Fox, P.F., Brodkorb, A., The casein micelle: Historical aspects, current concepts and significance (2008) International Dairy Journal, 18 (7), pp. 677-684 
504 |a Guzey, D., McClements, D.-J., Weiss, J., Adsorption kinetics of BSA at air-sugar solution interfaces as affected by sugar type and concentration (2003) Food Research International, 36 (7), pp. 649-660 
504 |a HadjSadok, A., Moulai-Mostefa, N., Rebiha, M., Rheological properties and phase separation of xanthan-sodium caseinate mixtures analyzed by a response surface method (2010) International Journal of Food Properties, 13 (2), pp. 369-380 
504 |a Huck-Iriart, C., Álvarez Cerimedo, M.-S., Candal, R.-J., Herrera, M.-L., Structures and stability of lipid emulsions formulated with sodium caseinate (2011) Current Opinion in Colloid & Interface Science, 16 (5), pp. 412-420 
504 |a Kobori, T., Matsumoto, A., Sugiyama, S., pH-dependent interaction between sodium caseinate and xanthan gum (2009) Carbohydrate Polymers, 75 (4), pp. 719-723 
504 |a Kulmyrzaev, A., Bryant, C., McClements, D.-J., Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins (2000) Journal of Agricultural and Food Chemistry, 48 (5), pp. 1593-1597 
504 |a Liu, L., Zhao, Q., Liu, T., Zhao, M., Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil-water interface (2011) Food Hydrocolloids, 25 (5), pp. 921-927 
504 |a Liu, L., Zhao, Q., Liu, T., Long, Z., Kong, J., Zhao, M., Sodium caseinate/xanthan gum interactions in aqueous solution: Effect on protein adsorption at the oil-water interface (2012) Food Hydrocolloids, 27 (2), pp. 339-346 
504 |a McClements, D.-J., Protein-stabilized emulsions (2004) Current Opinion in Colloid & Interface Science, 9 (5), pp. 305-313 
504 |a McClements, D.J., Emulsion stability (2005) Food Emulsions, Principles, Practices, and Techniques, pp. 269-339. , 2nd edn., New York: CRC 
504 |a Mengual, O., Meunier, G., Cayré, I., Puech, K., Snabre, P., Turbiscan MA 2000: Multiple light scattering measurement for concentrated emulsion and suspension instability analysis (1999) Talanta, 50 (2), pp. 445-456 
504 |a Palazolo, G.-G., Sorgentini, D.-A., Wagner, J.-R., Emulsifying properties and surface behavior of native and denatured whey soy proteins in comparison with other proteins. Creaming stability of oil-in-water emulsions (2004) Journal of American Oil Chemists' Society, 81 (7), pp. 625-632 
504 |a Palazolo, G.-G., Sorgentini, D.-A., Wagner, J.-R., Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates (2005) Food Hydrocolloids, 19 (3), pp. 595-604 
504 |a Pan, L.-G., Tomás, M.-C., Añón, M.-C., Effect of sunflower lecithins on the stability of water-in-oil and oil-in-water emulsions (2002) Journal of Surfactants and Detergents, 5 (2), pp. 135-143 
504 |a Perrechil, F.-A., Cunha, R.-L., Oil-in-water stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition (2010) Journal of Food Engineering, 97 (4), pp. 441-448 
504 |a Pizones Ruiz-Henestrosa, V.-M., Carrera Sánchez, C., Rodríguez Patino, J.-M., Effect of sucrose on functional properties of soy globulins: Adsorption and foam characteristics (2008) Journal of Agricultural and Food Chemistry, 56 (7), pp. 2512-2521 
504 |a Relkin, P., Sourdet, S., Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions (2005) Food Hydrocolloids, 19 (3), pp. 503-511 
504 |a Semenova, M.-G., Antipova, A.-S., Belyakova, L.-E., Food protein interactions in sugar solutions (2002) Current Opinion in Colloid & Interface Science, 7 (5-6), pp. 438-444 
504 |a Thanasukarn, P., Pongsawatmanit, R., McClements, D.-J., Utilization of layer-by-layer interfacial deposition technique to improve freeze-thaw stability of oil-in-water emulsions (2006) Food Research International, 39 (6), pp. 721-729 
520 3 |a The aim of the present work was to investigate the effect of aqueous phase composition on the stability of emulsions formulated with 10 wt% sunflower oil as fat phase. Aqueous phase was formulated with 0.5, 2, or 5 wt% sodium caseinate, or sodium caseinate with the addition of two different hydrocolloids, xanthan gum or locust bean gum, both at 0.3 or 0.5 wt% level or sodium caseinate or with addition of 20 wt% sucrose. Emulsions were processed by Ultra-Turrax and then further homogenized by ultrasound. Creaming and flocculation kinetics were quantified by analyzing the samples with a Turbiscan MA 2000. Emulsions were also analyzed for particle size distribution, microstructure, viscosity, and dynamic surface properties. The most stable systems of all selected in the present work were the 0.3 or 0.5 wt% XG or 0.5 wt% LBG/0.5 wt% NaCas coarse emulsion and the 20 wt% sucrose/5 wt% NaCas fine emulsion. Surprisingly, coarse emulsions with the lower concentration of NaCas, which had greater D 4,3, were more stable than fine emulsions when the aqueous phase contained XG or LBG. In these conditions, the overall effect was less negative bulk interactions between hydrocolloids and sodium caseinate, which led to stability. Sugar interacted in a positive way, both in bulk and at the interface sites, producing more stable systems for small-droplet high-protein-concentration emulsions. This study shows the relevance of components interactions in microstructure and stability of caseinate emulsions. © 2012 Springer Science+Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 20020100100467 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 0060 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220080101504 
536 |a Detalles de la financiación: Acknowledgments María L. Herrera and Roberto J. Candal are researchers of the National Research Council of Argentina (CONI-CET). This work was supported by CONICET through Project PIP 11220080101504, by the National Agency for the Promotion of Science and Technology (ANPCyT) through Project PICT 0060, and by the University of Buenos Aires through project number 20020100100467. 
593 |a Instituto de Química Inorgánica, Medio Ambiente y Energía (INQUIMAE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA, Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Avda. Intendente Güiraldes, 1428 Buenos Aires, Argentina 
593 |a Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, CP 1650 San Martín, Provincia de Buenos Aires, Argentina 
593 |a Ciudad Univ., Pabellon de Indus., Intendente Guiraldes S/N, 1428 Buenos Aires, Argentina 
690 1 0 |a EMULSIONS 
690 1 0 |a SODIUM CASEINATE 
690 1 0 |a STABILITY 
690 1 0 |a SUCROSE 
690 1 0 |a SUNFLOWER 
690 1 0 |a XANTHAN AND LOCUST BEAN GUMS 
690 1 0 |a COMPONENTS INTERACTION 
690 1 0 |a DYNAMIC SURFACE 
690 1 0 |a FLOCCULATION KINETICS 
690 1 0 |a INTERFACE SITES 
690 1 0 |a LOCUST BEAN GUM 
690 1 0 |a SODIUM CASEINATE 
690 1 0 |a STABLE SYSTEMS 
690 1 0 |a SUNFLOWER 
690 1 0 |a COLLOIDS 
690 1 0 |a CONVERGENCE OF NUMERICAL METHODS 
690 1 0 |a EMULSIFICATION 
690 1 0 |a EMULSIONS 
690 1 0 |a MICROSTRUCTURE 
690 1 0 |a PARTICLE SIZE ANALYSIS 
690 1 0 |a PHASE COMPOSITION 
690 1 0 |a STABILITY 
690 1 0 |a SUGAR (SUCROSE) 
690 1 0 |a SODIUM 
700 1 |a Pizones Ruiz-Henestrosa, V.M. 
700 1 |a Candal, R.J. 
700 1 |a Herrera, M.L. 
773 0 |d 2013  |g v. 6  |h pp. 2406-2418  |k n. 9  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875198643&doi=10.1007%2fs11947-012-0901-y&partnerID=40&md5=ca3a055e4240c602b0b407f24c1b982f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-012-0901-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v6_n9_p2406_HuckIriart  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v6_n9_p2406_HuckIriart  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v6_n9_p2406_HuckIriart  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72245