Probe interval graphs and probe unit interval graphs on superclasses of cographs

A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonpr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Durán, G., Grippo, L.N, Safe, M.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06896caa a22008657a 4500
001 PAPER-11280
003 AR-BaUEN
005 20230518204124.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84883317009 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bonomo, F. 
245 1 0 |a Probe interval graphs and probe unit interval graphs on superclasses of cographs 
260 |c 2013 
270 1 0 |m CONICETArgentina 
506 |2 openaire  |e Política editorial 
504 |a Bayer, D., Bang Le, V., De Ridder, H.N., Probe threshold and probe trivially perfect graphs (2009) Theoretical Computer Science, 410 (47-49), pp. 4812-4822 
504 |a Brown, D.E., Ludgren, J.R., Bipartite probe interval graphs, circular-arc graphs, and interval point bigraphs (2006) Australasian Journal of Combinatorics, 35, pp. 221-236 
504 |a Brown, D.E., Ludgren, J.R., Sheng, L., Characterization of cycle-free unit probe interval graphs (2009) Discrete Applied Mathematics, 157, pp. 762-767 
504 |a Chandler, D., Chang, D.-M., Kloks, T., Liu, J., Peng, S.-L., On probe permutation graphs (2009) Discrete Applied Mathematics, 157, pp. 2611-2619 
504 |a Chandler, D., Chang, M.-S., Klocks, T., Liu, J., Peng, S.-L., Recognition of probe and partitioned probe distance hereditary graphs (2006) Lecture Notes in Computer Science, 4041, pp. 267-278 
504 |a Chandler, D., Chang, M.-S., Kloks, T., Bang Le, V., Peng, S.-L., Probe ptolemaic graphs (2008) COCOON, pp. 468-477 
504 |a Chv́atal, V., Hammer, P.L., (1975) Aggregation of Inequalities in Integer Programming, , Technical Report CS-TR-75-518, Stanford University 
504 |a Giakoumakis, V., Roussel, F., Thuillier, H., On p4-tidy graphs (1997) Discrete Mathematics & Theoretical Computer Science, 1 (1), pp. 17-41 
504 |a Golumbic, M.C., Lipshteyn, M., Chordal probe graphs (2004) Discrete Applied Mathematics, 143 (1-3), pp. 221-237 
504 |a Golumbic, M.C., Trenk, A.N., (2004) Tolerance Graphs, , Cambridge University Press, New York 
504 |a Hòang, C., (1985) Perfect Graphs, , PhD thesis, School of Computer Science, McGill University, Montreal 
504 |a Jamison, B., Olariu, S., A new class of brittle graphs (1989) Studies in Applied Mathematics, 1203, pp. 89-92 
504 |a Jamison, B., Olariu, S., On a unique tree representation for p4-extendible graphs (1991) Discrete Applied Mathematics, 34, pp. 151-164 
504 |a Le, V.B., De Ridder, H.N., Probe split graphs (2007) Discrete Mathematics & Theoretical Computer Science, 9, p. 1 
504 |a Lekkerkerker, C., Boland, D., Representation of finite graphs by a set of intervals on the real line (1962) Fundamenta Mathematicae, 51, pp. 45-64 
504 |a Liu, J., Zhou, H., Dominating subgraphs in graphs with some forbidden structures (1994) Discrete Mathematics, 135, pp. 163-168 
504 |a Przulj, N., Corneil, D., 2-tree probe interval grahps have a large obstruction set (2005) Discrete Applied Mathematics, 150, pp. 216-231 
504 |a Roberts, F., Indifference graphs (1969) Proof Techniques in Graph Theory, pp. 139-146. , In F. Harary, editor, Academic Press 
504 |a Sheng, L., Cycle-free probe interval graphs (1999) Congressus Numerantium, 140, pp. 33-42 
504 |a Tinhofer, G., Strong tree-cographs are birkhoff graphs (1989) Discrete Applied Mathematics, 22 (3), pp. 275-288 
504 |a Wegner, G., (1967) Eigenschaften der Nerven Homologisch-Einfacher Familien in Rn, , PhD thesis, Gottingen 
504 |a West, D.B., (2001) Introduction to Graph Theory, , Prentice Hall, New Jersey, USA, second edition 
504 |a Zhang, P., Schon, P., Fischer, E., Gayanis, E., Weiss, J., Wistler, S., Bourne, P., An algorithm based on graph theory for the assembly of contigs in physical mapping of dna (1994) Bioinformatics, 10 (3), pp. 309-317 
520 3 |a A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non-(probe G) graphs with disconnected complement for every graph class G with a companion. © 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France.  |l eng 
593 |a CONICET, Argentina 
593 |a Depto. de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Depto. de Matemática and Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Depto. de Ingeniería Industrial, FCFM, Universidad de Chile, Santiago, Chile 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina 
690 1 0 |a FORBIDDEN INDUCED SUBGRAPHS 
690 1 0 |a P4-TIDY GRAPHS 
690 1 0 |a PROBE INTERVAL GRAPHS 
690 1 0 |a PROBE UNIT INTERVAL GRAPHS 
690 1 0 |a TREECOGRAPHS 
690 1 0 |a FORBIDDEN INDUCED SUBGRAPHS 
690 1 0 |a HUMAN GENOME PROJECT 
690 1 0 |a INTERVAL GRAPH 
690 1 0 |a PHYSICAL MAPPING 
690 1 0 |a PROBE INTERVAL GRAPHS 
690 1 0 |a PROBE INTERVALS 
690 1 0 |a TREECOGRAPHS 
690 1 0 |a UNIT INTERVAL GRAPHS 
690 1 0 |a FORESTRY 
690 1 0 |a GRAPHIC METHODS 
690 1 0 |a PROBES 
690 1 0 |a TREES (MATHEMATICS) 
690 1 0 |a FORESTRY 
690 1 0 |a MATHEMATICS 
690 1 0 |a TREES 
700 1 |a Durán, G. 
700 1 |a Grippo, L.N. 
700 1 |a Safe, M.D. 
773 0 |d 2013  |g v. 15  |h pp. 177-194  |k n. 2  |p Discrete Math. Theor. Comput. Sci.  |x 14627264  |w (AR-BaUEN)CENRE-8788  |t Discrete Mathematics and Theoretical Computer Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883317009&partnerID=40&md5=b20285fc0113fc0a0946403f4eb2432f  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14627264_v15_n2_p177_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14627264_v15_n2_p177_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_14627264_v15_n2_p177_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72233