Expansion of CD11b+Ly6G+Ly6Cint cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions

The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Spallanzani, R.G
Otros Autores: Dalotto-Moreno, T., Raffo Iraolagoitia, X.L, Ziblat, A., Domaica, C.I, Avila, D.E, Rossi, L.E, Fuertes, M.B, Battistone, M.A, Rabinovich, G.A, Salatino, M., Zwirner, N.W
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 26434caa a22021017a 4500
001 PAPER-11087
003 AR-BaUEN
005 20230518204111.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84890335373 
024 7 |2 cas  |a dexamethasone, 50-02-2; medroxyprogesterone acetate, 71-58-9; mifepristone, 84371-65-3; Antigens, CD11b; Antigens, Ly; Antineoplastic Agents, Hormonal; Ly-6C antigen, mouse; Ly6G antigen, mouse; Medroxyprogesterone Acetate, C2QI4IOI2G; Receptors, Glucocorticoid; STAT3 Transcription Factor; Stat3 protein, mouse 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CIIMD 
100 1 |a Spallanzani, R.G. 
245 1 0 |a Expansion of CD11b+Ly6G+Ly6Cint cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions 
260 |c 2013 
270 1 0 |m Zwirner, N.W.; Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina; email: norzwi@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 (2010) Int J Cancer, 127, pp. 2893-2917. , 10.1002/ijc.25516 21351269 10.1002/ijc.25516 1:CAS:528:DC%2BC3cXhtlWhs7fO 
504 |a Santen, R.J., Manni, A., Harvey, H., Redmond, C., Endocrine treatment of breast cancer in women (1990) Endocr Rev, 11, pp. 221-265. , 10.1210/edrv-11-2-221 2194783 10.1210/edrv-11-2-221 1:CAS:528: DyaK3MXhslGqtg%3D%3D 
504 |a Liedtke, C., Mazouni, C., Hess, K.R., Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer (2008) J Clin Oncol, 26, pp. 1275-1281. , 10.1200/JCO.2007.14.4147 18250347 10.1200/JCO.2007.14.4147 
504 |a Tan, D.S., Marchio, C., Jones, R.L., Savage, K., Smith, I.E., Dowsett, M., Reis-Filho, J.S., Triple negative breast cancer: Molecular profiling and prognostic impact in adjuvant anthracycline-treated patients (2008) Breast Cancer Res Treat, 111, pp. 27-44. , 10.1007/s10549-007-9756-8 17922188 10.1007/s10549-007-9756-8 1:CAS:528:DC%2BD1cXos1Wnsbs%3D 
504 |a Chlebowski, R.T., Anderson, G.L., Changing concepts: Menopausal hormone therapy and breast cancer (2012) J Natl Cancer Inst, 104, pp. 517-527. , 10.1093/jnci/djs014 22427684 10.1093/jnci/djs014 1:CAS:528: DC%2BC38XlsFSitLY%3D 
504 |a Nelson, H.D., Walker, M., Zakher, B., Mitchell, J., Menopausal hormone therapy for the primary prevention of chronic conditions: A systematic review to update the US Preventive Services Task Force recommendations (2012) Ann Intern Med, 157, pp. 104-113. , 10.7326/0003-4819-157-2-201207170-00466 22786830 
504 |a Aupperlee, M., Kariagina, A., Osuch, J., Haslam, S.Z., Progestins and breast cancer (2005) Breast Dis, 24, pp. 37-57. , 16917138 1:CAS:528:DC%2BD28XotFKhu7o%3D 
504 |a Lange, C.A., Sartorius, C.A., Abdel-Hafiz, H., Spillman, M.A., Horwitz, K.B., Jacobsen, B.M., Progesterone receptor action: Translating studies in breast cancer models to clinical insights (2008) Adv Exp Med Biol, 630, pp. 94-111. , 10.1007/978-0-387-78818-0-7 18637487 10.1007/978-0-387-78818-0-7 1:CAS:528:DC%2BC3cXhtlKisLbO 
504 |a Lange, C.A., Challenges to defining a role for progesterone in breast cancer (2008) Steroids, 73, pp. 914-921. , 10.1016/j.steroids.2007.12.023 18243264 10.1016/j.steroids.2007.12.023 1:CAS:528:DC%2BD1cXmvFensb0%3D 
504 |a Giulianelli, S., Vaque, J.P., Soldati, R., Estrogen receptor alpha mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the cyclin D1/MYC promoters (2012) Cancer Res, 72, pp. 2416-2427. , 10.1158/0008-5472.CAN-11-3290 22396492 10.1158/0008-5472.CAN-11-3290 1:CAS:528:DC%2BC38Xmt1ymur8%3D 
504 |a Cerliani, J.P., Guillardoy, T., Giulianelli, S., Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer (2011) Cancer Res, 71, pp. 3720-3731. , 10.1158/0008-5472.CAN-10-3074 21464042 10.1158/0008-5472.CAN-10-3074 1:CAS:528:DC%2BC3MXmtVGltbw%3D 
504 |a Bunt, S.K., Sinha, P., Clements, V.K., Leips, J., Ostrand-Rosenberg, S., Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression (2006) J Immunol, 176, pp. 284-290. , 16365420 1:CAS:528:DC%2BD2MXhtlagtL7I 
504 |a Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., Bronte, V., Myeloid-derived suppressor cell heterogeneity and subset definition (2010) Curr Opin Immunol, 22, pp. 238-244. , 10.1016/j.coi.2010.01.021 20171075 10.1016/j.coi.2010.01.021 1:CAS:528:DC%2BC3cXks1Srtr0%3D 
504 |a Kusmartsev, S., Gabrilovich, D.I., Role of immature myeloid cells in mechanisms of immune evasion in cancer (2006) Cancer Immunol Immunother, 55, pp. 237-245. , 10.1007/s00262-005-0048-z 16047143 10.1007/s00262-005-0048-z 
504 |a Sinha, P., Parker, K.H., Horn, L., Ostrand-Rosenberg, S., Tumor-induced myeloid-derived suppressor cell function is independent of IFN-gamma and IL-4Ralpha (2012) Eur J Immunol, 42, pp. 2052-2059. , 10.1002/eji.201142230 22673957 10.1002/eji.201142230 1:CAS:528: DC%2BC38XhtFaku7jL 
504 |a Lanier, L.L., Up on the tightrope: Natural killer cell activation and inhibition (2008) Nat Immunol, 9, pp. 495-502. , 10.1038/ni1581 18425106 10.1038/ni1581 1:CAS:528:DC%2BD1cXkvVOqu74%3D 
504 |a Moretta, L., Bottino, C., Pende, D., Castriconi, R., Mingari, M.C., Moretta, A., Surface NK receptors and their ligands on tumor cells (2006) Semin Immunol, 18, pp. 151-158. , 10.1016/j.smim.2006.03.002 16730454 10.1016/j.smim.2006.03.002 1:CAS:528:DC%2BD28XltlKnu7w%3D 
504 |a Vivier, E., Tomasello, E., Baratin, M., Walzer, T., Ugolini, S., Functions of natural killer cells (2008) Nat Immunol, 9, pp. 503-510. , 10.1038/ni1582 18425107 10.1038/ni1582 1:CAS:528:DC%2BD1cXkvVOqu78%3D 
504 |a Zwirner, N.W., Domaica, C.I., Cytokine regulation of natural killer cell effector functions (2010) Biofactors, 36, pp. 274-288. , 10.1002/biof.107 20623510 10.1002/biof.107 1:CAS:528:DC%2BC3cXht1Ggt7fO 
504 |a Zwirner, N.W., Fuertes, M.B., Girart, M.V., Domaica, C.I., Rossi, L.E., Cytokine-driven regulation of NK cell functions in tumor immunity: Role of the MICA-NKG2D system (2007) Cytokine Growth Factor Rev, 18, pp. 159-170. , 10.1016/j.cytogfr.2007.01.013 17324607 10.1016/j.cytogfr.2007.01.013 1:CAS:528:DC%2BD2sXjtFKjsbg%3D 
504 |a Mamessier, E., Sylvain, A., Bertucci, F., Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition (2011) Cancer Res, 71, pp. 6621-6632. , 10.1158/0008-5472.CAN-11-0792 21937679 10.1158/0008-5472.CAN-11-0792 1:CAS:528:DC%2BC3MXhtlygtrrF 
504 |a Li, H., Han, Y., Guo, Q., Zhang, M., Cao, X., Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta1 (2009) J Immunol, 182, pp. 240-249. , 19109155 1:CAS:528:DC%2BD1cXhsFCis7bI 
504 |a Hoechst, B., Voigtlaender, T., Ormandy, L., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor (2009) Hepatology, 50, pp. 799-807. , 10.1002/hep.23054 19551844 10.1002/hep.23054 1:CAS:528: DC%2BD1MXhtFKntL%2FI 
504 |a Elkabets, M., Ribeiro, V.S., Dinarello, C.A., Ostrand-Rosenberg, S., Di Santo, J.P., Apte, R.N., Vosshenrich, C.A., IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function (2010) Eur J Immunol, 40, pp. 3347-3357. , 10.1002/eji.201041037 21110318 10.1002/eji.201041037 1:CAS:528: DC%2BC3cXhsVOktbbF 
504 |a Mundy-Bosse, B.L., Lesinski, G.B., Jaime-Ramirez, A.C., Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice (2011) Cancer Res, 71, pp. 5101-5110. , 10.1158/0008-5472.CAN-10-2670 21680779 10.1158/0008-5472.CAN-10-2670 1:CAS:528:DC%2BC3MXpsVOhtLo%3D 
504 |a Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W.E., Zinn, K.R., Zhang, H.G., Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host (2007) Blood, 109, pp. 4336-4342. , 10.1182/blood-2006-09-046201 17244679 10.1182/blood-2006-09-046201 1:CAS:528:DC%2BD2sXls1ams7g%3D 
504 |a Nausch, N., Galani, I.E., Schlecker, E., Cerwenka, A., Mononuclear myeloid-derived "suppressor" cells express RAE-1 and activate natural killer cells (2008) Blood, 112, pp. 4080-4089. , 10.1182/blood-2008-03-143776 18753637 10.1182/blood-2008-03-143776 1:CAS:528:DC%2BD1cXhsVSmsrrN 
504 |a Simpson, K.D., Templeton, D.J., Cross, J.V., Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment (2012) J Immunol, 189, pp. 5533-5540. , 10.4049/jimmunol.1201161 23125418 10.4049/jimmunol.1201161 1:CAS:528:DC%2BC38Xhsl2jtLbM 
504 |a Dupre, S.A., Redelman, D., Hunter, Jr.K.W., Microenvironment of the murine mammary carcinoma 4T1: Endogenous IFN-gamma affects tumor phenotype, growth, and metastasis (2008) Exp Mol Pathol, 85, pp. 174-188. , 10.1016/j.yexmp.2008.05.002 18929358 10.1016/j.yexmp.2008.05.002 1:CAS:528:DC%2BD1cXhsVGgsrfM 
504 |a Yan, H.H., Pickup, M., Pang, Y., Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung (2010) Cancer Res, 70, pp. 6139-6149. , 10.1158/0008-5472.CAN-10-0706 20631080 10.1158/0008-5472.CAN-10-0706 1:CAS:528:DC%2BC3cXpsVCntLo%3D 
504 |a Olkhanud, P.B., Baatar, D., Bodogai, M., Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells (2009) Cancer Res, 69, pp. 5996-6004. , 10.1158/0008-5472.CAN-08-4619 19567680 10.1158/0008-5472.CAN-08-4619 1:CAS:528:DC%2BD1MXosV2mt78%3D 
504 |a Tkach, M., Coria, L., Rosemblit, C., Targeting Stat3 induces senescence in tumor cells and elicits prophylactic and therapeutic immune responses against breast cancer growth mediated by NK cells and CD4+ T cells (2012) J Immunol, 189, pp. 1162-1172. , 10.4049/jimmunol.1102538 22753933 10.4049/jimmunol.1102538 1:CAS:528:DC%2BC38XhtVKltbvL 
504 |a Alvarez, L.D., Marti, M.A., Veleiro, A.S., Misico, R.I., Estrin, D.A., Pecci, A., Burton, G., Hemisuccinate of 21-hydroxy-6,19-epoxyprogesterone: A tissue-specific modulator of the glucocorticoid receptor (2008) ChemMedChem, 3, pp. 1869-1877. , 10.1002/cmdc.200800256 18985652 10.1002/cmdc.200800256 1:CAS:528:DC%2BD1MXotl2r 
504 |a Molinero, L.L., Fuertes, M.B., Fainboim, L., Rabinovich, G.A., Zwirner, N.W., Up-regulated expression of MICA on activated T lymphocytes involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase, and calcineurin (2003) J Leukoc Biol, 73, pp. 815-822. , 10.1189/jlb.0602329 12773514 10.1189/jlb.0602329 1:CAS:528: DC%2BD3sXksFegtrY%3D 
504 |a Saudemont, A., Burke, S., Colucci, F., A simple method to measure NK cell cytotoxicity in vivo (2010) Methods Mol Biol, 612, pp. 325-334. , 10.1007/978-1-60761-362-6-22 20033651 10.1007/978-1-60761-362-6-22 1:CAS:528:DC%2BC3cXovVKju78%3D 
504 |a Marigo, I., Bosio, E., Solito, S., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor (2010) Immunity, 32, pp. 790-802. , 10.1016/j.immuni.2010.05.010 20605485 10.1016/j.immuni.2010.05.010 1:CAS:528:DC%2BC3cXovVahtbc%3D 
504 |a Courtin, A., Communal, L., Vilasco, M., Glucocorticoid receptor activity discriminates between progesterone and medroxyprogesterone acetate effects in breast cells (2012) Breast Cancer Res Treat, 131, pp. 49-63. , 10.1007/s10549-011-1394-5 21336598 10.1007/s10549-011-1394-5 1:CAS:528:DC%2BC3MXhs1ajt7%2FE 
504 |a Bamberger, C.M., Else, T., Bamberger, A.M., Beil, F.U., Schulte, H.M., Dissociative glucocorticoid activity of medroxyprogesterone acetate in normal human lymphocytes (1999) J Clin Endocrinol Metab, 84, pp. 4055-4061. , 10.1210/jc.84.11.4055 10566649 10.1210/jc.84.11.4055 1:CAS:528: DyaK1MXntlOqtbg%3D 
504 |a Dressel, R., Nolte, J., Elsner, L., Novota, P., Guan, K., Streckfuss-Bomeke, K., Hasenfuss, G., Engel, W., Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells (2010) FASEB J, 24, pp. 2164-2177. , 10.1096/fj.09-134957 20145206 10.1096/fj.09-134957 1:CAS:528: DC%2BC3cXptV2kt7Y%3D 
504 |a Rabinovich, G.A., Sotomayor, E., Gabrilovich, D., Immunosuppressive strategies that are mediated by tumor cells (2007) Annu Rev Immunol, 25, pp. 267-296. , 10.1146/annurev.immunol.25.022106.141609 17134371 10.1146/annurev. immunol.25.022106.141609 1:CAS:528:DC%2BD2sXltlagu7c%3D 
504 |a Tkach, M., Rosemblit, C., Rivas, M.A., P42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth (2013) Endocr Relat Cancer, 20, pp. 197-212. , 10.1530/ERC-12-0194 23329648 10.1530/ERC-12-0194 1:CAS:528: DC%2BC3sXotFyrsLo%3D 
504 |a Diaz Flaque, M.C., Vicario, R., Proietti, C.J., Izzo, F., Schillaci, R., Elizalde, P.V., Progestin drives breast cancer growth by inducing p21(CIP1) expression through the assembly of a transcriptional complex among Stat3, progesterone receptor and ErbB-2 (2013) Steroids, 78, pp. 559-567. , 10.1016/j.steroids.2012.11.003 23178160 10.1016/j.steroids.2012.11.003 1:CAS:528:DC%2BC38XhvV2rsLvM 
504 |a Ling, X., Arlinghaus, R.B., Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice (2005) Cancer Res, 65, pp. 2532-2536. , 10.1158/0008-5472.CAN-04-2425 15805244 10.1158/0008-5472.CAN-04-2425 1:CAS:528:DC%2BD2MXjtVeqsrs%3D 
504 |a Younos, I.H., Dafferner, A.J., Gulen, D., Britton, H.C., Talmadge, J.E., Tumor regulation of myeloid-derived suppressor cell proliferation and trafficking (2012) Int Immunopharmacol, 13, pp. 245-256. , 10.1016/j.intimp.2012.05.002 22609473 10.1016/j.intimp.2012.05.002 1:CAS:528:DC%2BC38Xot12ntr4%3D 
504 |a Salatino, M., Dalotto, T., Croci, D.O., Mendez Huergo, S., Dergan Dylon, S., Cerliani, J., Toscano, M., Rabinovich, G., Progesterone-induced immunosuppression thwarts immunosurveillance to tumors and promotes lung metastasis in a breast cancer model [abstract] (2013) Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, , 6-10 April 2013, Washington, DC, Philadelphia (PA) AACR Abstract nr 449 
504 |a Benson, J.R., Teo, K.A., Breast cancer local therapy: What is its effect on mortality? (2012) World J Surg, 36, pp. 1460-1474. , 10.1007/s00268-012-1468-5 22392352 10.1007/s00268-012-1468-5 
504 |a Darby, S., McGale, P., Correa, C., Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials (2011) Lancet, 378, pp. 1707-1716. , 10.1016/S0140-6736(11)61629-2 22019144 10.1016/S0140-6736(11)61629-2 1:STN:280:DC%2BC3MbovV2nsg%3D%3D 
504 |a Nagaraj, S., Gabrilovich, D.I., Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells (2012) Semin Cancer Biol, 22, pp. 282-288. , 10.1016/j.semcancer.2012.01.010 22313876 10.1016/j.semcancer.2012.01.010 1:CAS:528:DC%2BC38XosVKjtbw%3D 
504 |a Fortin, C., Huang, X., Yang, Y., NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells (2012) J Immunol, 189, pp. 1843-1849. , 10.4049/jimmunol.1200584 22798671 10.4049/jimmunol.1200584 1:CAS:528:DC%2BC38XhtFaqsLnN 
504 |a Sceneay, J., Chow, M.T., Chen, A., Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche (2012) Cancer Res, 72, pp. 3906-3911. , 10.1158/0008-5472.CAN-11-3873 22751463 10.1158/0008-5472.CAN-11-3873 1:CAS:528:DC%2BC38XhtF2rtr3O 
504 |a Zhu, J., Huang, X., Yang, Y., Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer (2012) J Virol, 86, pp. 13689-13696. , 10.1128/JVI.01595-12 23055553 10.1128/JVI.01595-12 1:CAS:528: DC%2BC38XhslOqtbzK 
504 |a Yu, J., Du, W., Yan, F., Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer (2013) J Immunol, 190, pp. 3783-3797. , 10.4049/jimmunol.1201449 23440412 10.4049/jimmunol.1201449 1:CAS:528:DC%2BC3sXksVynsr8%3D 
504 |a Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., Ferrara, G.B., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase (2002) J Exp Med, 196, pp. 459-468. , 10.1084/jem.20020121 12186838 10.1084/jem.20020121 1:CAS:528: DC%2BD38XmsV2htLk%3D 
504 |a Sato, N., Saga, Y., Mizukami, H., Downregulation of indoleamine-2,3-dioxygenase in cervical cancer cells suppresses tumor growth by promoting natural killer cell accumulation (2012) Oncol Rep, 28, pp. 1574-1578. , 10.3892/or 22923135 1:CAS:528:DC%2BC38XhslWis7fP 2012.1984 
504 |a Wang, D., Saga, Y., Mizukami, H., Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy (2012) Int J Oncol, 40, pp. 929-934. , 10.3892/ijo 22179492 1:CAS:528:DC%2BC38XlslKiu7c%3D 2011.1295 
520 3 |a The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+, mostly CD11b +Ly6G+Ly6Cint and CD11b+Ly6G -Ly6Chigh cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b +Ly6G+Ly6Cint cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b+Ly6G+Ly6Cint cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b+Gr-1 + cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b+Gr-1 + cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b+Ly6G+Ly6Cint cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence. © 2013 Springer-Verlag Berlin Heidelberg.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: R. G. Spallanzani · X. L. Raffo Iraolagoitia · A. Ziblat · C. I. Domaica · D. E. Avila · L. E. Rossi · M. B. Fuertes · N. W. Zwirner (*) Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina e-mail: norzwi@gmail.com; nzwirner@ibyme.conicet.gov.ar 
536 |a Detalles de la financiación: Acknowledgments We would like to thank to Ana Clara Liber-man, PhD, from the Biomedicine Research Institute of Buenos Aires (CONICET and Max Planck Society Partner Institute) for providing the anti-GR antibody; to the team of Claudia Lanari, PhD, from the Laboratory of Hormonal Carcinogenesis at IBYME for providing MPA and RU486; and to Dr. Adalí Pecci (Institute of Physiology, Molecular Biology and Neurosciences -IFIBYNE-and Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Argentina) for providing the glucocorticoid-specific inhibitor hemisuccinate of 21-hydroxy-6,19-epoxyprogesterone. This work was supported by grants from the National Agency for Promotion of Science and Technology from Argentina (ANPCYT), the National Research Council of Argentina (CONICET) and the University of Buenos Aires (UBA), all to Norberto W. Zwirner. Raúl G. Spallanzani, Tomás Dalotto-Moreno, Ximena L. Raffo Iraolagoitia, Damián E. Avila, Andrea Ziblat, and María A. Battistone are fellows of CONICET. Carolina I. Domaica holds a postdoctoral fellowship from Bunge & Born Foundation. Mercedes B. Fuertes, Gabriel A. Rabinovich, Mariana Salatino and Norberto W. Zwirner are members of the Researcher Career of CONICET. 
593 |a Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina 
593 |a Laboratorio de Inmunopatología, IBYME, CONICET, Buenos Aires, Argentina 
593 |a Cátedra de Inmunología, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina 
593 |a Laboratorio de Mecanismos Moleculares de la Fertilización, IBYME, CONICET, Buenos Aires, Argentina 
593 |a Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Buenos Aires, Argentina 
690 1 0 |a BREAST CANCER 
690 1 0 |a MEDROXYPROGESTERONE ACETATE 
690 1 0 |a MYELOID-DERIVED SUPPRESSOR CELLS 
690 1 0 |a NK CELLS 
690 1 0 |a CD11B ANTIGEN 
690 1 0 |a DEXAMETHASONE 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a MEDROSTERONA 
690 1 0 |a MEDROXYPROGESTERONE ACETATE 
690 1 0 |a MIFEPRISTONE 
690 1 0 |a PROGESTERONE RECEPTOR 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a BONE MARROW 
690 1 0 |a BONE MARROW CELL 
690 1 0 |a BREAST TUMOR 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL EXPANSION 
690 1 0 |a CELL FUNCTION 
690 1 0 |a CELL LINE 
690 1 0 |a CELL MOTILITY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOTOXICITY 
690 1 0 |a DEGRANULATION 
690 1 0 |a DRUG EFFICACY 
690 1 0 |a DRUG EXPOSURE 
690 1 0 |a EFFECTOR CELL 
690 1 0 |a FEMALE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a IMMUNOSURVEILLANCE 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a IN VIVO STUDY 
690 1 0 |a MOUSE 
690 1 0 |a MYELOID DERIVED SUPPRESSOR CELL 
690 1 0 |a NATURAL KILLER CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a SPLEEN 
690 1 0 |a TUMOR CELL 
690 1 0 |a TUMOR GROWTH 
690 1 0 |a TUMOR VOLUME 
690 1 0 |a TUMOR XENOGRAFT 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIGENS, CD11B 
690 1 0 |a ANTIGENS, LY 
690 1 0 |a ANTINEOPLASTIC AGENTS, HORMONAL 
690 1 0 |a BLOTTING, WESTERN 
690 1 0 |a BREAST NEOPLASMS 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CYTOTOXICITY, IMMUNOLOGIC 
690 1 0 |a FEMALE 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a FLUORESCENT ANTIBODY TECHNIQUE 
690 1 0 |a HUMANS 
690 1 0 |a KILLER CELLS, NATURAL 
690 1 0 |a MEDROXYPROGESTERONE ACETATE 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED BALB C 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a MYELOID CELLS 
690 1 0 |a RECEPTORS, GLUCOCORTICOID 
690 1 0 |a STAT3 TRANSCRIPTION FACTOR 
690 1 0 |a TUMOR CELLS, CULTURED 
653 0 0 |a medrosterona, Craveri, Argentina; ru 486, Sigma 
700 1 |a Dalotto-Moreno, T. 
700 1 |a Raffo Iraolagoitia, X.L. 
700 1 |a Ziblat, A. 
700 1 |a Domaica, C.I. 
700 1 |a Avila, D.E. 
700 1 |a Rossi, L.E. 
700 1 |a Fuertes, M.B. 
700 1 |a Battistone, M.A. 
700 1 |a Rabinovich, G.A. 
700 1 |a Salatino, M. 
700 1 |a Zwirner, N.W. 
773 0 |d 2013  |g v. 62  |h pp. 1781-1795  |k n. 12  |p Cancer Immunol. Immunother.  |x 03407004  |t Cancer Immunology, Immunotherapy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890335373&doi=10.1007%2fs00262-013-1483-x&partnerID=40&md5=ed16479a010809f64042ab976f31e753  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00262-013-1483-x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407004_v62_n12_p1781_Spallanzani  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407004_v62_n12_p1781_Spallanzani  |y Registro en la Biblioteca Digital 
961 |a paper_03407004_v62_n12_p1781_Spallanzani  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72040