Linear combinations of frame generators in systems of translates
A finitely generated shift invariant space V is a closed subspace of L2 (Rd) that can be generated by the integer translates of a finite number of functions. A set of frame generators for V is a set of functions whose integer translates form a frame for V. In this note we give necessary and sufficie...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02581caa a22004097a 4500 | ||
|---|---|---|---|
| 001 | PAPER-11046 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204109.0 | ||
| 008 | 140217s2013 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84890540865 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Cabrelli, C. | |
| 245 | 1 | 0 | |a Linear combinations of frame generators in systems of translates |
| 260 | |c 2013 | ||
| 270 | 1 | 0 | |m Cabrelli, C.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aemail: cabrelli@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a A finitely generated shift invariant space V is a closed subspace of L2 (Rd) that can be generated by the integer translates of a finite number of functions. A set of frame generators for V is a set of functions whose integer translates form a frame for V. In this note we give necessary and sufficient conditions in order that a minimal set of frame generators can be obtained by taking linear combinations of the given frame generators. Surprisingly the results are very different from the recently studied case when the property to be a frame is not required. © 2013 Elsevier Inc. All rights reserved. |l eng | |
| 536 | |a Article in Press | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina | ||
| 593 | |a IMAS-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | ||
| 690 | 1 | 0 | |a FINITELY GENERATED SHIFT INVARIANT SPACE |
| 690 | 1 | 0 | |a FRAME |
| 690 | 1 | 0 | |a GRAMIAN |
| 690 | 1 | 0 | |a MINIMAL GENERATOR SET |
| 690 | 1 | 0 | |a RIESZ BASIS |
| 690 | 1 | 0 | |a SHIFT INVARIANT SPACE |
| 700 | 1 | |a Mosquera, C.A. | |
| 700 | 1 | |a Paternostro, V. | |
| 773 | 0 | |d 2013 |p J. Math. Anal. Appl. |x 0022247X |w (AR-BaUEN)CENRE-271 |t Journal of Mathematical Analysis and Applications | |
| 856 | 4 | 1 | |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84890540865&partnerID=40&md5=2f2cf5951845e1097592b7c8d8ebd7e3 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2013.12.028 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0022247X_v_n_p_Cabrelli |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v_n_p_Cabrelli |y Registro en la Biblioteca Digital |
| 961 | |a paper_0022247X_v_n_p_Cabrelli |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 71999 | ||