Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment

In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for li...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Iriel, A.
Otros Autores: Novo, J.M, Cordon, G.B, Lagorio, M.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09703caa a22007097a 4500
001 PAPER-11030
003 AR-BaUEN
005 20230518204108.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84891834212 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PHCBA 
100 1 |a Iriel, A. 
245 1 0 |a Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment 
260 |c 2014 
270 1 0 |m Lagorio, M.G.; INQUIMAE/ Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, Argentina; email: mgl@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Franck, F., Juneau, P., Popovic, R., Resolution of the photosystem i and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature (2002) Biochim. Biophys. Acta, 1556, pp. 239-246 
504 |a Govindjee, Sixty-three years since Kautsky: Chlorophyll a fluorescence (1995) Aust. J. Plant Physiol, 22, pp. 131-160 
504 |a Pfündel, E., Estimating the contribution of the photosystem i to the total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, pp. 185-195 
504 |a Agati, G., Cerovic, Z., Moya, I., The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem i contribution to the 735 nm fluorescence band (2000) Photochem. Photobiol., 72, pp. 75-84 
504 |a Buschman, C., Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves (2007) Photosynth. Res., 92, pp. 261-271 
504 |a Eullaffroy, P., Vernet, G., The F684/F735 chlorophyll fluorescence ratio: A potential tool for rapid detection and determination of herbicide phytotoxicity in algae (2003) Water Res., 37, pp. 1983-1990 
504 |a Palombi, L., Cecchi, G., Lognoli, D., Raimondi, V., Toci, G., Agati, G., A retrieval algorithm to evaluate the photosystem i and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures (2011) Photosynth. Res., 108, pp. 225-239 
504 |a Maxwell, K., Johnson, G., Chlorophyll fluorescence-a practical guide (2000) J. Exp. Bot., 51, pp. 659-668 
504 |a Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, pp. 115-150. , In (Edited by H. Le and E. Salcedo), Nova Science Publishers, New York 
504 |a Gitelson, A., Buschmann, C., Lichtenthaler, H., Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements (1998) J. Plant Physiol., 152, pp. 283-296 
504 |a Peterson, R., Oja, V., Laisk, A., Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis (2001) Photosynth. Res., 70, pp. 185-196 
504 |a Roelofs, T., Lee, H., Holzwarth, A., A new approach to the characterization of the primary processes in photosystem II alpha-and-beta-units (1992) Biophys. J., 61, pp. 1147-1163 
504 |a Pedrós, R., Moya, I., Goulas, Y., Yacquemoud, S., Chlorophyll fluorescence emission spectrum inside a leaf (2008) Photochem. Photobiol. Sci., 7, pp. 498-502 
504 |a Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740 
504 |a Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066 
504 |a Gojmerac, T., Ostojic, Z., Paukovic, D., Pleadin, J., Žuric, M., Evaluation of surface water pollution with atrazine, an endocrine disruptor chemical, in agricultural areas of Turopolje. Croatia (2006) Bull. Environ. Contam. Toxicol, 76, pp. 490-496 
504 |a Wu, M., Quirindongo, M., Sass, J., Wetzler, A., Still poisoning the well (2010) Atrazine Continues to Contaminate Surface Water and Drinking Water in the United States, , Report of the Natural Resources Defense Council 
504 |a Hayes, L.A., Beasley, V., De Solla, S.R., Iguchi, T., Ingraham, H., Kestemont, P., Kniewald, J., Willingham, E., Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes (2011) J. Steroid Biochem. Mol. Biol, 127, pp. 64-73 
504 |a Maya, F., Estela, J.M., Cerdà, V., Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system (2011) Talanta, 85, pp. 588-595 
504 |a Conrad, R., Buchel, C., Wilhelm, C., Arsalane, W., Berkaloff, C., Duval, J.C., Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring (1993) J. Appl. Phycol., 5, pp. 505-516 
504 |a Ralph, P.J., Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence (2000) Aquat. Bot., 66, pp. 141-152 
504 |a Fan, D.Y., Jia, H., Barber, J., Chow, W.S., Novel effects of methyl viologen on photosystem II function in spinach leaves (2009) Eur. Biophys. J., 39, pp. 191-199 
504 |a Tomlin, C., (2000) The Pesticide Manual, , 12th edn. British Crop Protection Council, Farnham 
504 |a Lichtenthaler, H., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43, pp. 379-393 
504 |a Preuss, M., Hall, E.A.H., Mediated herbicide inhibition in a pet biosensor (1995) Anal. Chem., 67, pp. 1940-1949 
504 |a Hess, F., Light-dependent herbicides: An overview (2000) Weed Sci., 48, pp. 160-170 
504 |a Chueca, M.C., Ortega Nieblas, M., Villarroya, M., García Baudín, J.M., Inducción de fluorescencia en pino. Respuesta de Pinus halepensis Miller, P. Nigra Arnold y P. pinaster Aiton a los herbicidas hexazinona y simazina (2001) Invest. Agr: Sist. Recur. For., 10, pp. 367-374 
504 |a Lin, Z., Liu, N., Lin, G., Pan, X., Peng, C., Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza (2007) J. Fluoresc., 17, pp. 663-669 
504 |a Wong, P., Efects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614 (2000) Chemosphere, 41, pp. 177-182 
520 3 |a In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II. In this work we use the effect of herbicides at defined sites in the photosynthetic chain to derive information about the fluorescence emission of photosystems. Additionally, chlorophyll fluorescence was tested as a bioindicator for detection of both herbicides in aquatic environment. © 2013 The American Society of Photobiology.  |l eng 
593 |a Centro de Estudios Transdisciplinarios Del Agua, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a INQUIMAE/ Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, Argentina 
593 |a LART-IFEVA/ Dpto. de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina 
700 1 |a Novo, J.M. 
700 1 |a Cordon, G.B. 
700 1 |a Lagorio, M.G. 
773 0 |d 2014  |g v. 90  |h pp. 107-112  |k n. 1  |p Photochem. Photobiol.  |x 00318655  |w (AR-BaUEN)CENRE-43  |t Photochemistry and Photobiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891834212&doi=10.1111%2fphp.12142&partnerID=40&md5=7a1f021c9d48e1761d54644288f4b3db  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/php.12142  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00318655_v90_n1_p107_Iriel  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318655_v90_n1_p107_Iriel  |y Registro en la Biblioteca Digital 
961 |a paper_00318655_v90_n1_p107_Iriel  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 71983