The subvariety of commutative residuated lattices represented by twist-products

Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety {Mathematical expression} of commutative residuated lattices that ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Busaniche, M.
Otros Autores: Cignoli, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02890caa a22003257a 4500
001 PAPER-10984
003 AR-BaUEN
005 20230518204105.0
008 140217s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84892700652 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Busaniche, M. 
245 1 4 |a The subvariety of commutative residuated lattices represented by twist-products 
260 |c 2014 
270 1 0 |m Busaniche, M.; Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, Santa Fe, S3000GLN, Argentina; email: mbusaniche@santafe-conicet.gov.ar 
506 |2 openaire  |e Política editorial 
520 3 |a Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety {Mathematical expression} of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of {Mathematical expression}, a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in {Mathematical expression}, and we analyze the subvariety of representable algebras in {Mathematical expression}. Finally, we consider some specific class of bounded integral commutative residuated lattices {Mathematical expression}, and for each fixed element {Mathematical expression}, we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. © 2014 Springer Basel.  |l eng 
536 |a Article in Press 
593 |a Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, Santa Fe, S3000GLN, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a 2010 MATHEMATICS SUBJECT CLASSIFICATION: PRIMARY: 03G10, SECONDARY: 03B47, 03G25 
700 1 |a Cignoli, R. 
773 0 |d 2014  |h pp. 1-18  |p Algebra Univers.  |x 00025240  |w (AR-BaUEN)CENRE-267  |t Algebra Universalis 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84892700652&partnerID=40&md5=279dedc13c8cbecf0941f2d1e6d8a6e5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00012-014-0265-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00025240_v_n_p1_Busaniche  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00025240_v_n_p1_Busaniche  |y Registro en la Biblioteca Digital 
961 |a paper_00025240_v_n_p1_Busaniche  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71937