The subvariety of commutative residuated lattices represented by twist-products
Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety {Mathematical expression} of commutative residuated lattices that ca...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02890caa a22003257a 4500 | ||
|---|---|---|---|
| 001 | PAPER-10984 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204105.0 | ||
| 008 | 140217s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84892700652 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Busaniche, M. | |
| 245 | 1 | 4 | |a The subvariety of commutative residuated lattices represented by twist-products |
| 260 | |c 2014 | ||
| 270 | 1 | 0 | |m Busaniche, M.; Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, Santa Fe, S3000GLN, Argentina; email: mbusaniche@santafe-conicet.gov.ar |
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety {Mathematical expression} of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of {Mathematical expression}, a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in {Mathematical expression}, and we analyze the subvariety of representable algebras in {Mathematical expression}. Finally, we consider some specific class of bounded integral commutative residuated lattices {Mathematical expression}, and for each fixed element {Mathematical expression}, we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. © 2014 Springer Basel. |l eng | |
| 536 | |a Article in Press | ||
| 593 | |a Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, Santa Fe, S3000GLN, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a 2010 MATHEMATICS SUBJECT CLASSIFICATION: PRIMARY: 03G10, SECONDARY: 03B47, 03G25 |
| 700 | 1 | |a Cignoli, R. | |
| 773 | 0 | |d 2014 |h pp. 1-18 |p Algebra Univers. |x 00025240 |w (AR-BaUEN)CENRE-267 |t Algebra Universalis | |
| 856 | 4 | 1 | |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84892700652&partnerID=40&md5=279dedc13c8cbecf0941f2d1e6d8a6e5 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00012-014-0265-4 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00025240_v_n_p1_Busaniche |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00025240_v_n_p1_Busaniche |y Registro en la Biblioteca Digital |
| 961 | |a paper_00025240_v_n_p1_Busaniche |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 71937 | ||