Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina)

In order to evaluate the Stuckenia filiformis plant species as an indicator organism of heavy metal pollution in biomonitoring studies of the aquatic ecosystem, the aim of this study was to determine the levels of heavy metal accumulation (Co, Cu, Fe, Mn, Ni, Pb and Zn) in leaves of the submerged ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Harguinteguy, C.A
Otros Autores: Cirelli, A.F, Pignata, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15276caa a22009617a 4500
001 PAPER-10933
003 AR-BaUEN
005 20230518204101.0
008 140217s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84891354263 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MICJA 
100 1 |a Harguinteguy, C.A. 
245 1 0 |a Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina) 
260 |c 2014 
270 1 0 |m Harguinteguy, C.A.; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Avda. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; email: c_harguinteguy@com.uncor.edu 
506 |2 openaire  |e Política editorial 
504 |a Yi, Y., Yang, Z., Zhang, S., Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin (2011) Environ. Pollut., 159, pp. 2575-2585 
504 |a Shinn, C., Dauba, F., Grenouillet, G., Guenard, G., Lek, S., Temporal variation of heavy metal contamination in fish of the river lot in southern France (2009) Ecotoxicol. Environ. Saf., 72, pp. 1957-1965 
504 |a Fu, J., Hu, X., Tao, X., Yu, H., Zhang, X., Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China (2013) Chemosphere 
504 |a Udeigwe, T.K., Eze, P.N., Teboh, J.M., Stietiya, M.H., Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality (2011) Environ. Int., 37, pp. 258-267 
504 |a Harguinteguy, C.A., Schreiber, R., Pignata, M.L., Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina) (2013) Ecol. Indic., 27, pp. 8-16 
504 |a Jackson, L., Paradigms of metal accumulation in rooted aquatic vascular plants (1998) Sci. Total Environ., 219, pp. 223-231 
504 |a Cardwell, A., Hawker, D.W., Greenway, M., Metal accumulation in aquatic macrophytes from southeast Queensland, Australia (2002) Chemosphere, 48, pp. 653-663 
504 |a Fritioff, A., Greger, M., Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans (2006) Chemosphere, 63, pp. 220-227 
504 |a Sawidis, T., Chettri, M., Zachariadis, G., Stratis, J., Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece (1995) Ecotoxicol. Environ. Saf., 32, pp. 73-80 
504 |a Peng, K., Luo, C., Lou, L., Li, X., Shen, Z., Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment (2008) Sci. Total Environ., 392, pp. 22-29 
504 |a Szymanowska, A., Samecka-Cymerman, A., Kempers, A., Heavy metals in three lakes in West Poland (1999) Ecotoxicol. Environ. Saf., 43, pp. 21-29 
504 |a Instituto Nacional de Estadísticas y Censo (INDEC) http://www.censo2010.indec.gov.ar/, (accessed on 2013.10.04)Monferrán, M.V., Galanti, L.N., Bonansea, R.I., Amé, M.V., Wunderlin, D.A., Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina) (2011) J. Environ. Monit., 13, p. 398 
504 |a Wunderlin, D.A., María del Pilar, D., María Valeria, A., Fabiana, P.S., Cecilia, H.A., de los Ángeles B.María, Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study Suquía River Basin (Córdoba-Argentina) (2001) Water Res., 35, pp. 2881-2894 
504 |a Hued, A.C., Bistoni, M.D.l.Á., Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina (2005) Hydrobiologia, 543, pp. 279-298 
504 |a Merlo, C., Abril, A., Amé, M.V., Argüello, G.A., Carreras, H.A., Chiappero, M.S., Hued, A.C., Solís, V.M., Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs (2011) Sci. Total Environ., 409, pp. 5034-5045 
504 |a Bermudez, G.M.A., Jasan, R., Plá, R., Pignata, M.L., Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition (2012) J. Hazard. Mater., pp. 447-456 
504 |a Wannaz, E.D., Carreras, H.A., Rodriguez, J.H., Pignata, M.L., Use of biomonitors for the identification of heavy metals emission sources (2012) Ecol. Indic., 20, pp. 163-169 
504 |a Rodriguez, J.H., Weller, S.B., Wannaz, E.D., Klumpp, A., Pignata, M.L., Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris (2011) Ecol. Indic., 11, pp. 1673-1680 
504 |a Pignata, M.L., Plá, R.R., Jasan, R.C., Martínez, M.S., Rodríguez, J.H., Wannaz, E.D., Gudiño, G.L., González, C.M., Distribution of atmospheric trace elements and assesment of air quality in Argentina employing the lichen, Ramalina celastri, as a passive biomonitor: detection of air pollution emission sources (2007) Int. J. Environ. Health, 1, pp. 29-46 
504 |a Wannaz, E.D., Carreras, H.A., Pérez, C.A., Pignata, M.L., Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina (2006) Sci. Total Environ., 361, pp. 267-278 
504 |a Bermudez, G., Rodriguez, J., Pignata, M., Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina (2009) Environ. Res., 109, pp. 6-14 
504 |a Gaiero, D., Ross, G.R., Depetris, P., Kempe, S., Spatial and temporal variability of total non-residual heavy metals content in stream sediments from the Suquia River system, Cordoba, Argentina (1997) Water Air Soil Pollut., 93, pp. 303-319 
504 |a Nimptsch, J., Wunderlin, D., Dollan, A., Pflugmacher, S., Antioxidant and biotransformation enzymes in as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (2005) Chemosphere, 61, pp. 147-157 
504 |a Haynes, R.R., Holm-Nielsen, L.B., (2003) Potamogetonaceae, Flora Neotropica, , New York Botanical Garden, New York 
504 |a Guzmán, M.C., Bistoni, M.A., Tamagnini, L.M., González, R.D., Recovery of Escherichia coli in fresh water fish, Jenynsia multidentata and Bryconamericus iheringi (2004) Water Res., 38, pp. 2368-2374 
504 |a Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G., Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem (2008) Anal. Chim. Acta., 606, pp. 135-150 
504 |a Pasquini, A.I., Lecomte, K.L., Piovano, E.L., Depetris, P.J., Recent rainfall and runoff variability in central Argentina (2006) Quat. Int., 158, pp. 127-139 
504 |a Vázquez, J., Roque, M.R.M., (1979) Geografía física de la provincia de Córdoba, Editorial Boldt, Buenos Aires 
504 |a Ramsar list of wetlands of international importance, , http://URL:http://www.ramsar.org/cda/es/ramsar-documents-list-annotated-ramsar-17044/main/ramsar/1-31-218%5E17044_4000_2__, Laguna de Mar Chiquita, Ramsar Site No 1176, (accessed on 2013.10.04) 
504 |a Zárate, M.A., Loess of southern South America (2003) Quat. Sci. Rev., 22, pp. 1987-2006 
504 |a Servicio Meteorológico Nacional (SMN), Argentina http://URL:http://www.smn.gov.ar/, (accessed on 2013.10.04)Franco-Uría, A., López-Mateo, C., Roca, E., Fernández-Marcos, M.L., Source identification of heavy metals in pastureland by multivariate analysis in NW Spain (2009) J. Hazard. Mater., 165, pp. 1008-1015 
504 |a Peltola, P., ström, M., Urban geochemistry: a multimedia and multielement survey of a small town in Northern Europe (2003) Environ. Geochem. Health, 25, pp. 397-419 
504 |a Nekrasova, G., Ushakova, O., Ermakov, A., Uimin, M., Byzov, I., Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch (2011) Russ. J. Ecol., 42, pp. 458-463 
504 |a Reimann, C., Filzmoser, P., Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data (2000) Environ. Geol., 39, pp. 1001-1014 
504 |a Legislación Argentina, (1991) Ley 24.051 y Decreto Reglamentario 831/93 que regulan la generación, manipulación, transporte, tratamiento y disposición final de residuos peligrosos 
504 |a U.S.Environmental Protection Agency (EPA) Region 5, Resource Conservation and Recovery Act (RCRA). Ecological Screening Levels, August 22, 2003, , http://epa.gov/region05/waste/cars/pdfs/ecological-screening-levels-200308.pdf, (accessed on 2013.10.04) 
504 |a U.S.Environmental Protection Agency (EPA) Ecological Screening Values for Surface Water, Sediment, and Soil, , http://www.osti.gov/bridge/purl.cover.jsp?purl=/47642uJvjR/webviewable/4764.PDF, WSRC-TR-98-00110., (accessed on 2013.10.04) 
504 |a U.S.Environmental Protection Agency (EPA) Water Quality Criteria. National Recommended Water Quality Criteria, , http://water.epa.gov/scitech/swgidance/standards/criteria/current/index.cfm#C, (accessed on 2013.10.04) 
504 |a Adriano, D.C., (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, , Springer-Verlag, New York 
504 |a Monferrán, M.V., Sánchez Agudo, J.A., Pignata, M.L., Wunderlin, D.A., Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus (2009) Environ. Pollut., 157, pp. 2570-2576 
504 |a Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K., Chakrabarty, D., Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system (2010) Bioresour. Technol., 101, pp. 3025-3032 
504 |a Carling, G.T., Richards, D.C., Hoven, H., Miller, T., Fernandez, D.P., Rudd, A., Pazmino, E., Johnson, W.P., Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health (2013) Sci. Total Environ., 443, pp. 798-811 
504 |a Charzeddine, L., Andrade, J., Martins, C., Gharseddine, S., Pérez, M., Variación estacional de metales pesados en Americonuphis magna (Annelida: Polychaeta) y en sedimentos de la región nororiental de Venezuela (2002) Saber, 14 
504 |a Wedepohl, K.H., The composition of the continental crust (1995) Geochim. Cosmochim. Acta, 59, pp. 1217-1232 
504 |a http://tropicos.org/, tropicos.org, (accessed on 2013.10.04)Nedeau, E.J., Merritt, R.W., Kaufman, M.G., The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality (2003) Environ. Pollut., 123, pp. 1-13 
504 |a Kabata-Pendias, A., Pendias, H., (2001) Trace Elements in Soils and Plants, , CRC Press, London 
504 |a Demirezen, D., Aksoy, A., Common hydrophytes as bioindicators of iron and manganese pollutions (2006) Ecol. Indic., 6, pp. 388-393 
504 |a Baldantoni, D., Maisto, G., Bartoli, G., Alfani, A., Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination (2005) Aquat. Bot., 83, pp. 48-60 
520 3 |a In order to evaluate the Stuckenia filiformis plant species as an indicator organism of heavy metal pollution in biomonitoring studies of the aquatic ecosystem, the aim of this study was to determine the levels of heavy metal accumulation (Co, Cu, Fe, Mn, Ni, Pb and Zn) in leaves of the submerged macrophyte S. filiformis and the possible relationship of the concentrations of these metals with those found in surface water and sediment samples of the Suquía river. Sampling was carried out in July 2006 and February 2009, during the dry and wet seasons, respectively, at 7 sampling sites where three replicates of surface water, sediment and S. filiformis plants were collected. Cobalt, Ni and Zn in surface water were significantly higher in the samples collected in 2006 than those in 2009. In sediment, the concentrations of Co, Cu, Ni, Pb and Zn, along with organic matter, were significantly higher in 2006, while those of Fe were significantly greater in 2009. Copper and Pb exceeded the limits established for the protection of aquatic life by national (Cu: 2.0μgL-1, Pb: 2.0μgL-1) and international organizations (Cu: 1.6μgL-1, Pb: 2.5μgL-1) in surface water, while in sediment, Zn exceeded the limit for ecological screening levels (Zn: 121.0mgkg-1) in 2006. In the surface water and sediment samples, heavy metal concentrations were found to be higher downstream of Córdoba city (Sites 6 and 7) in both sampling campaigns, probably related to the contribution of pollutants from the effluent discharge of a wastewater treatment plant and industrial activities of the city. The aquatic plant S. filiformis showed a high capacity to accumulate heavy metals in its tissues, in areas of the river where higher values of heavy metals in the abiotic compartments surface water and sediments were observed. Copper, Pb and Zn incorporated as contaminants in surface water and sediments were able to be removed by S. filiformis by self-purification processes. Therefore, this species could be proposed as a suitable heavy metal bioindicator for the early stages of pollution in rivers.© 2013 Elsevier B.V.  |l eng 
593 |a Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Avda. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina 
593 |a Instituto de Investigaciones en Producción Animal (INPA) UBA-CONICET, Centro de Estudios Transdisciplinarios del Agua (CETA) and Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina 
651 4 |a ARGENTINA 
690 1 0 |a BIOACCUMULATION 
690 1 0 |a HEAVY METALS 
690 1 0 |a STUCKENIA FILIFORMIS 
690 1 0 |a SUQUIA RIVER 
700 1 |a Cirelli, A.F. 
700 1 |a Pignata, M.L. 
773 0 |d 2014  |g v. 114  |h pp. 111-118  |p Microchem. J.  |x 0026265X  |w (AR-BaUEN)CENRE-2274  |t Microchemical Journal 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84891354263&partnerID=40&md5=c14acaff0a0bddc8db47d91374622bb0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.microc.2013.12.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0026265X_v114_n_p111_Harguinteguy  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0026265X_v114_n_p111_Harguinteguy  |y Registro en la Biblioteca Digital 
961 |a paper_0026265X_v114_n_p111_Harguinteguy  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71886