The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway

Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP+/NADPH ratio. Transgenic parasites...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De Vas, M.G
Otros Autores: Portal, P., Alonso, G.D, Schlesinger, M., Flawiá, M.M, Torres, H.N, Villamil, S.F, Paveto, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20550caa a22018737a 4500
001 PAPER-10889
003 AR-BaUEN
005 20230518204058.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-78650176906 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: ABI15738, ABJ09678, ABJ09679; 
024 7 |2 cas  |a reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase, 9023-03-4; NADP, 53-59-8; NADPH-Ferrihemoprotein Reductase, 1.6.2.4; Sterols 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJPYB 
100 1 |a De Vas, M.G. 
245 1 4 |a The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway 
260 |c 2011 
270 1 0 |m Paveto, C.; Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular (INGEBI) CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; email: cpaveto@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albi, E., Viola Magni, M.P., The role of intranuclear lipids (2004) Biol. Cell, 96, pp. 657-667 
504 |a Aoyama, Y., Yoshida, Y., Sonoda, Y., Sato, Y., Deformylation of 32-oxo-24, 25-dihydrolanosterol by the purified cytochrome P-45014DM (lanosterol 14 alpha-demethylase) from yeast evidence confirming the intermediate step of lanosterol 14 alpha-demethylation (1989) J. Biol. Chem., 264, pp. 18502-18505 
504 |a Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species (1996) J. Biochem., 119, pp. 926-933 
504 |a Arora, A., Raghuraman, H., Chattopadhyay, A., Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach (2004) Biochem. Biophys. Res. Commun., 318, pp. 920-926 
504 |a Belenky, P., Bogan, K.L., Brenner, C., NAD+ metabolism in health and disease (2007) Trends Biochem. Sci., 32, pp. 12-19 
504 |a Berger, F., Ramirez-Hernandez, M.H., Ziegler, M., The new life of a centenarian: signalling functions of NAD(P) (2004) Trends Biochem. Sci., 29, pp. 111-118 
504 |a Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification (1959) Can J Biochem Physiol, 37, pp. 911-917 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 
504 |a Braga, M.V., Urbina, J.A., de Souza, W., Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi (2004) Int. J. Antimicrob. Agents, 24, pp. 72-78 
504 |a Cannon, R.D., Kerridge, D., Correlation between the sterol composition of membranes and morphology in Candida albicans (1988) J. Med. Vet. Mycol., 26, pp. 57-65 
504 |a Conney, A.H., Pharmacological implications of microsomal enzyme induction (1967) Pharmacol. Rev., 19, pp. 317-366 
504 |a Cournia, Z., Ullmann, G.M., Smith, J.C., Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study (2007) J. Phys. Chem. B, 111, pp. 1786-1801 
504 |a Das, A., Sligar, S.G., Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer (2009) Biochemistry, 48, pp. 12104-12112 
504 |a de Souza, W., Rodrigues, J.C., Sterol biosynthesis pathway as target for anti-trypanosomatid drugs (2009) Interdiscip Perspect Infect Dis, 2009, p. 642502 
504 |a Denisov, I.G., Makris, T.M., Sligar, S.G., Schlichting, I., Structure and chemistry of cytochrome P450 (2005) Chem. Rev., 105, pp. 2253-2277 
504 |a Dixon, H., Ginger, C.D., Williamson, J., Trypanosome sterols and their metabolic origins (1972) Comp Biochem Physiol B, 41, pp. 1-18 
504 |a Esteves, M.G., Gonzales-Perdomo, M., Alviano, C.S., Angluster, J., Goldenberg, S., Changes in fatty acid composition associated with differentiation of Trypanosoma cruzi (1989) FEMS Microbiol. Lett., 50, pp. 31-34 
504 |a Florin-Christensen, M., Florin-Christensen, J., de Isola, E.D., Lammel, E., Meinardi, E., Brenner, R.R., Rasmussen, L., Temperature acclimation of Trypanosoma cruzi epimastigote and metacyclic trypomastigote lipids (1997) Mol. Biochem. Parasitol., 88, pp. 25-33 
504 |a Garzoni, L.R., Caldera, A., Meirelles Mde, N., de Castro, S.L., Docampo, R., Meints, G.A., Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi (2004) Int. J. Antimicrob. Agents, 23, pp. 273-285 
504 |a Gelboin, H.V., Carcinogens, enzyme induction, and gene action (1967) Adv. Cancer Res., 10, pp. 1-81 
504 |a Gibbs, R.A., Weinstock, G.M., Metzker, M.L., Muzny, D.M., Sodergren, E.J., Scherer, Genome sequence of the Brown Norway rat yields insights into mammalian evolution (2004) Nature, 428, pp. 493-521 
504 |a Gillette, J.R., Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum (1966) Adv. Pharmacol., 4, pp. 219-261 
504 |a Gillette, J.R., Davis, D.C., Sasame, H.A., Cytochrome P-450 and its role in drug metabolism (1972) Annu Rev Pharmacol, 12, pp. 57-84 
504 |a Gonzalez-Kristeller, D.C., Farage, L., Fiorini, L.C., Loomis, W.F., da Silva, A.M., The P450 oxidoreductase, RedA, controls development beyond the mound stage in Dictyostelium discoideum (2008) BMC Dev. Biol, 8, p. 8 
504 |a Guhl, F., Chagas disease in Andean countries (2007) Mem. Inst. Oswaldo Cruz, 102 (SUPPL. 1), pp. 29-38 
504 |a Hankins, E.G., Gillespie, J.R., Aikenhead, K., Buckner, F.S., Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors (2005) Mol. Biochem. Parasitol., 144 (1), pp. 68-75 
504 |a Hammarton, T.C., Monnerat, S., Mottram, J.C., Cytokinesis in trypanosomatids (2007) Curr. Opin. Microbiol., 10, pp. 520-527 
504 |a Hannemann, F., Bichet, A., Ewen, K.M., Bernhardt, R., Cytochrome P450 systems - biological variations of electron transport chains (2007) Biochim. Biophys. Acta, 1770, pp. 330-344 
504 |a Iyanagi, T., Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain (2005) Biochem. Biophys. Res. Commun., 338, pp. 520-528 
504 |a Jandrositz, A., Turnowsky, F., Hogenauer, G., The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization (1991) Gene, 107, pp. 155-160 
504 |a Kaneda, Y., Nagakura, K., Goutsu, T., Lipid composition of three morphological stages of Trypanosoma cruzi (1986) Comp Biochem Physiol B, 83, pp. 533-536 
504 |a Kelly, S.L., Lamb, D.C., Corran, A.J., Baldwin, B.C., Parks, L.W., Kelly, D.E., Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase (1995) FEBS Lett., 377, pp. 217-220 
504 |a Koopmann, E., Hahlbrock, K., Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley (1997) Proc. Natl Acad. Sci. USA, 94, pp. 14954-14959 
504 |a Korn, E.D., Von Brand, T., Tobie, E.J., The sterols of Trypanosoma cruzi and Crithidia fasciculata (1969) Comp. Biochem. Physiol., 30, pp. 601-610 
504 |a Kuwahara, T., White, R.A., Agosin, M., A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties (1985) Arch. Biochem. Biophys., 239, pp. 18-28 
504 |a Kwasnicka-Crawford, D.A., Vincent, S.R., Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity (2005) Biochem. Biophys. Res. Commun., 336, pp. 565-571 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 
504 |a Lees, N.D., Broughton, M.C., Sanglard, D., Bard, M., Azole susceptibility and hyphal formation in a cytochrome P-450-deficient mutant of Candida albicans (1990) Antimicrob. Agents Chemother., 34, pp. 831-836 
504 |a Lees, N.D., Skaggs, B., Kirsch, D.R., Bard, M., Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae - a review (1995) Lipids, 30, pp. 221-226 
504 |a Lees, N.D., Bard, M., Kirsch, D.R., Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae (1999) Crit. Rev. Biochem. Mol. Biol., 34, pp. 33-47 
504 |a Leonardo, M.R., Dailly, Y., Clark, D.P., Role of NAD in regulating the adhE gene of Escherichia coli (1996) J. Bacteriol., 178, pp. 6013-6018 
504 |a Lepesheva, G.I., Hargrove, T.Y., Anderson, S., Kleshchenko, Y., Futak, V., Wawrzak, Z., Villalta, F., Waterman, M.R., Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi. J. Biol. Chem., (in press); Matsumura, H., Miyachi, S., Cycling assay for nicotinamide adenine dinucleotides (1980) Methods Enzymol., 69, pp. 465-470 
504 |a Mercer, E.I., Inhibitors of sterol biosynthesis and their applications (1993) Prog. Lipid Res., 32, pp. 357-416 
504 |a Meyer, H., Holz, G.G., Biosynthesis of lipids by kinetoplastid flagellates (1966) J. Biol. Chem., 241, pp. 5000-5007 
504 |a Mukhopadhyay, K., Kohli, A., Prasad, R., Drug susceptibilities of yeast cells are affected by membrane lipid composition (2002) Antimicrob. Agents Chemother., 46, pp. 3695-3705 
504 |a Murataliev, M.B., Feyereisen, R., Walker, F.A., Electron transfer by diflavin reductases (2004) Biochim. Biophys. Acta, 1698, pp. 1-26 
504 |a Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C., A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry (1991) J. Immunol. Methods, 139, pp. 271-279 
504 |a Nyholm, T., Nylund, M., Soderholm, A., Slotte, J.P., Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules (2003) Biophys. J., 84, pp. 987-997 
504 |a Paine, M.J., Garner, A.P., Powell, D., Sibbald, J., Sales, M., Pratt, N., Cloning and characterization of a novel human dual flavin reductase (2000) J. Biol. Chem., 275, pp. 1471-1478 
504 |a Parasassi, T., De Stasio, G., d'Ubaldo, A., Gratton, E., Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence (1990) Biophys. J., 57, pp. 1179-1186 
504 |a Parks, L.W., Casey, W.M., Physiological implications of sterol biosynthesis in yeast (1995) Annu. Rev. Microbiol., 49, pp. 95-116 
504 |a Pena-Diaz, J., Montalvetti, A., Flores, C.L., Constan, A., Hurtado-Guerrero, R., De Souza, W., Mitochondrial localization of the mevalonate pathway enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae (2004) Mol. Biol. Cell, 15, pp. 1356-1363 
504 |a Pereira, C.A., Alonso, G.D., Paveto, M.C., Iribarren, A., Cabanas, M.L., Torres, H.N., Flawia, M.M., Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites (2000) J. Biol. Chem., 275, pp. 1495-1501 
504 |a Pollak, N., Dolle, C., Ziegler, M., The power to reduce: pyridine nucleotides - small molecules with a multitude of functions (2007) Biochem. J., 402, pp. 205-218 
504 |a Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawia, M.M., Torres, H.N., Paveto, C., Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi suggested role on drug resistance (2008) Mol. Biochem. Parasitol., 160, pp. 42-51 
504 |a Porter, T.D., Wilson, T.E., Kasper, C.B., Expression of a functional 78,000 dalton mammalian flavoprotein, NADPH-cytochrome P-450 oxidoreductase, in Escherichia coli (1987) Arch. Biochem. Biophys., 254, pp. 353-367 
504 |a Quinones, W., Urbina, J.A., Dubourdieu, M., Luis Concepcion, J., The glycosome membrane of Trypanosoma cruzi epimastigotes: protein and lipid composition (2004) Exp. Parasitol., 106, pp. 135-149 
504 |a Roberts, C.W., McLeod, R., Rice, D.W., Ginger, M., Chance, M.L., Goad, L.J., Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa (2003) Mol. Biochem. Parasitol., 126, pp. 129-142 
504 |a Rodrigues, C.O., Catisti, R., Uyemura, S.A., Vercesi, A.E., Lira, R., Rodriguez, C., The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin-permeabilization (2001) J. Eukaryot. Microbiol., 48, pp. 588-594 
504 |a Rohloff, P., Montalvetti, A., Docampo, R., Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi (2004) J. Biol. Chem., 279, pp. 52270-52281 
504 |a Sant'Anna, C., de Souza, W., Cunha, E.S.N., Biogenesis of the reservosomes of Trypanosoma cruzi (2004) Microsc. Microanal., 10, pp. 637-646 
504 |a Sant'Anna, C., Nakayasu, E.S., Pereira, M.G., Lourenco, D., de Souza, W., Almeida, I.C., Cunha, E.S.N.L., Subcellular proteomics of Trypanosoma cruzi reservosomes (2009) Proteomics, 9, pp. 1782-1794 
504 |a Santa-Rita, R.M., Lira, R., Barbosa, H.S., Urbina, J.A., de Castro, S.L., Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis (2005) J. Antimicrob. Chemother., 55, pp. 780-784 
504 |a Skaggs, B.A., Alexander, J.F., Pierson, C.A., Schweitzer, K.S., Chun, K.T., Koegel, C., Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis (1996) Gene, 169, pp. 105-109 
504 |a Urbina, J.A., Vivas, J., Ramos, H., Larralde, G., Aguilar, Z., Avilan, L., Alteration of lipid order profile and permeability of plasma membranes from Trypanosoma cruzi epimastigotes grown in the presence of ketoconazole (1988) Mol. Biochem. Parasitol., 30, pp. 185-195 
504 |a Urbina, J.A., Ergosterol biosynthesis and drug development for Chagas disease (2009) Mem. Inst. Oswaldo Cruz, 104 (SUPPL. 1), pp. 311-318 
504 |a Vanden Bossche, H., (1995) Chemotherapy of Human Fungal Infections, , Gustav Fisher Verlag, Jena, Germany 
504 |a Vazquez, M.P., Levin, M.J., Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector (1999) Gene, 239, pp. 217-225 
504 |a Vernis, L., Facca, C., Delagoutte, E., Soler, N., Chanet, R., Guiard, B., A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast (2009) PLoS ONE, 4, pp. e4376 
504 |a Ying, W., NAD+ and NADH in brain functions, brain diseases and brain aging (2007) Front Biosci, 12, pp. 1863-1888 
504 |a Ying, W., NAD+ and NADH in neuronal death (2007) J Neuroimmune Pharmacol, 2, pp. 270-275 
504 |a Ying, W., NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences (2008) Antioxid. Redox Signal., 10, pp. 179-206 
504 |a Yoshida, Y., Cytochrome P450 of fungi: primary target for azole antifungal agents (1988) Curr. Top. Med. Mycol., 2, pp. 388-418 
520 3 |a Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP+/NADPH ratio. Transgenic parasites with augmented ergosterol content presented a higher membrane order with a corresponding diminished bulk-phase endocytosis. These results support a significant role for TcCPR-B and TcCPR-C in the sterol biosynthetic pathway and to our knowledge for the first time reveals the participation of more than one CPR in this metabolic route. Notably, TcCPR-B was found in reservosomes while TcCPR-C localised in the endoplasmic reticulum. In addition, we suggest a different role for TcCPR-A, since its over-expression is lethal, displaying cells with an increased DNA content, aberrant morphology and severe ultrastructural alterations. © 2010 Australian Society for Parasitology Inc.  |l eng 
536 |a Detalles de la financiación: Umweltbundesamt 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank Dr. Fred Opperdoes (Universite Catholique de Louvain, Brussels) for the anti-GAPDH antibody, James Bangs (University of Wisconsin, USA) for the anti-BIP antibody, Dr. Carlos Labriola (Fundación Instituto LF Leloir, Argentina) for the anti-calreticulin antibody and Dr. Juan J. Cazzulo (UNSAM, Argentina) for the anti-cruzipain antibody. We also are grateful to Dr. Sandra Verstraeten for the GP value determinations. This work was funded by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad de Buenos Aires, (UBA) and Agencia Nacional de Promocion Cientifica y Tecnologica, (ANPCyT) from Argentina. 
593 |a Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular (INGEBI) CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina 
593 |a Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a INSERM U969, CNRS UMR7622, Université Pierre et Marie Curie, 9 quai Saint Bernard, Case 24, 75252 Paris, Cedex05, France 
690 1 0 |a NADPH-DEPENDENT CYTOCHROME P450 REDUCTASES 
690 1 0 |a STEROL METABOLISM 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a GENOMIC DNA 
690 1 0 |a REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE FERRIHEMOPROTEIN REDUCTASE 
690 1 0 |a CYTOCHROME 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a METABOLISM 
690 1 0 |a PARASITE 
690 1 0 |a STEROL 
690 1 0 |a ARTICLE 
690 1 0 |a CELLULAR DISTRIBUTION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DNA CONTENT 
690 1 0 |a ENDOCYTOSIS 
690 1 0 |a ENDOPLASMIC RETICULUM 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a GENE OVEREXPRESSION 
690 1 0 |a IMMUNOFLUORESCENCE MICROSCOPY 
690 1 0 |a MEMBRANE FLUIDITY 
690 1 0 |a MEMBRANE PERMEABILITY 
690 1 0 |a MORPHOLOGY 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a OXIDATION REDUCTION STATE 
690 1 0 |a PROTEIN DETERMINATION 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a STEROL SYNTHESIS 
690 1 0 |a TRANSGENE 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a ANIMALS 
690 1 0 |a BIOSYNTHETIC PATHWAYS 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a NADP 
690 1 0 |a NADPH-FERRIHEMOPROTEIN REDUCTASE 
690 1 0 |a ORGANELLES 
690 1 0 |a PHAGOCYTOSIS 
690 1 0 |a STEROLS 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a TRYPANOSOMA CRUZI 
700 1 |a Portal, P. 
700 1 |a Alonso, G.D. 
700 1 |a Schlesinger, M. 
700 1 |a Flawiá, M.M. 
700 1 |a Torres, H.N. 
700 1 |a Villamil, S.F. 
700 1 |a Paveto, C. 
773 0 |d 2011  |g v. 41  |h pp. 99-108  |k n. 1  |p Int. J. Parasitol.  |x 00207519  |w (AR-BaUEN)CENRE-5208  |t International Journal for Parasitology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650176906&doi=10.1016%2fj.ijpara.2010.07.016&partnerID=40&md5=c8661f49f955e953d132181719d8e5ac  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijpara.2010.07.016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00207519_v41_n1_p99_DeVas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207519_v41_n1_p99_DeVas  |y Registro en la Biblioteca Digital 
961 |a paper_00207519_v41_n1_p99_DeVas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71842