Tug-of-war games and PDEs

We review some recent results concerning tug-of-war games and their relation to some well-known partial differential equations (PDEs). In particular, we will show that solutions to certain PDEs can be obtained as limits of values of tug-of-war games when the parameter that controls the length of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09031caa a22007577a 4500
001 PAPER-10696
003 AR-BaUEN
005 20230518204046.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79960376317 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rossi, J.D. 
245 1 0 |a Tug-of-war games and PDEs 
260 |c 2011 
270 1 0 |m Rossi, J.D.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina; email: jrossi@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Armstrong, S.N., Smart, C.K., An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions (2010) Calc. Var. PDEs, 37, pp. 381-384 
504 |a Aronsson, G., Extensions of functions satisfying Lipschitz conditions (1967) Ark. Mat., 6, pp. 551-561 
504 |a Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bulletin of the American Mathematical Society, 41 (4), pp. 439-505. , DOI 10.1090/S0273-0979-04-01035-3, PII S0273097904010353 
504 |a Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Diff. Eqns, 106, pp. 90-106 
504 |a Barles, G., Busca, J., Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term (2001) Communications in Partial Differential Equations, 26 (11-12), pp. 2323-2337 
504 |a Barles, G., Souganidis, P.E., Convergence of approximation schemes for fully nonlinear second order equations (1991) Asymp. Analysis, 4, pp. 271-283 
504 |a Barron, E.N., Evans, L.C., Jensen, R., The infinity Laplacian, Aronsson's equation and their generalizations (2008) Trans. Am. Math. Soc., 360, pp. 77-101 
504 |a Bhattacharya, T., Di Benedetto, E., Manfredi, J., Limits as p → ∞ of Δpup = f and related extremal problems (1991) Rend. Sem. Mat. Univ. Polit. Torino, pp. 15-68. , Special Issue 
504 |a Caffarelli, L., Cabre, X., Fully nonlinear elliptic equations (1995) Colloquium Publications, 43. , (Providence, RI: American Mathematical Society 
504 |a Charro, F., Peral, I., Limit branch of solutions as p → ∞ for a family of sub-diffusive problems related to the p-Laplacian (2007) Commun. PDEs, 32, pp. 1965-1981 
504 |a Charro, F., Garcia Azorero, J., Rossi, J.D., A mixed problem for the infinity Laplacian via tug-of-war games (2009) Calc. Var. PDEs, 34, pp. 307-320 
504 |a Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Am. Math. Soc., 27, pp. 1-67 
504 |a Crandall, M.G., Gunnarsson, G., Wang, P., Uniqueness of ∞-harmonic functions and the eikonal equation (2007) Commun. PDEs, 32, pp. 1587-1615 
504 |a Evans, L.C., Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem (1999) Memoirs of the American Mathematical Society, 137. , (Providence, RI: American Mathematical Society 
504 |a Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem (2007) Nonlinear Analysis, Theory, Methods and Applications, 66 (2), pp. 349-366. , DOI 10.1016/j.na.2005.11.030, PII S0362546X05009867 
504 |a Hopf, E., Über den funktionalen insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung (1932) Math. Z., 34, pp. 194-233 
504 |a Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient (1993) Arch. Ration. Mech. Analysis, 123, pp. 51-74 
504 |a Juutinen, P., Minimization problems for Lipschitz functions via viscosity solutions (1998) Annales Acad. Sci. Fenn. Math. Diss., 115, pp. 1-39 
504 |a Juutinen, P., Absolutely minimizing Lipschitz extension on a metric space (2002) Annales Acad. Sci. Fenn. Math., 27, pp. 57-67 
504 |a Juutinen, P., Principal eigenvalue of a badly degenerate operator and applications (2007) J. Diff. Eqns, 236, pp. 532-550 
504 |a Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem (2005) Calc. Var. PDEs, 23, pp. 169-192 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Analysis, 148, pp. 89-105 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation (2001) SIAM Journal on Mathematical Analysis, 33 (3), pp. 699-717. , PII S0036141000372179 
504 |a Kohn, R.V., Serfaty, S., A deterministic-control-based approach to motion by curvature (2006) Commun. Pure Appl. Math., 59, pp. 344-407 
504 |a Le Gruyer, E., On absolutely minimizing Lipschitz extensions and PDE Δ∞(u) = 0 (2007) NoDEA. Nonlin. Diff. Eqns Applic., 14, pp. 29-55 
504 |a Le Gruyer, E., Archer, J.C., Harmonious extensions (1998) SIAM J. Math. Analysis, 29, pp. 279-292 
504 |a McShane, E.J., Extension of range of functions (1934) Bull. Am. Math. Soc., 40, pp. 837-842 
504 |a Maitra, A.P., Sudderth, W.D., Discrete gambling and stochastic games (1996) Applications of Mathematics, 32. , (Springer 
504 |a Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization of p-harmonic functions (2010) Proc. Am. Math. Soc., 138, pp. 881-889 
504 |a Manfredi, J.J., Parviainen, M., Rossi, J.D., Dynamic programming principle for tugof- war games with noise ESAIM: Control Optim. Calc. Variations, , DOI:10.1051/cocv/2010046 
504 |a Manfredi, J.J., Parviainen, M., Rossi, J.D., An Asymptotic Mean Value Characterization for a Class of Nonlinear Parabolic Equations Related to Tug-of-War Games, , Preprint 
504 |a Neyman, A., Sorin, S., (2003) Stochastic Games and Applications, , NATO Science Series C (Springer 
504 |a Oberman, A.M., A convergent difference scheme for the infinity laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Mathematics of Computation, 74 (251), pp. 1217-1230. , DOI 10.1090/S0025-5718-04-01688-6, PII S0025571804016886 
504 |a Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120 
504 |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D., Tug-of-war and the infinity Laplacian (2009) J. Am. Math. Soc., 22, pp. 167-210 
504 |a Peres, Y., Pete, G., Somersielle, S., (2008) Biased Tug-of-War, the Biased Infinity Laplacian and Comparison with Exponential Cones, , Preprint, arXiv: 0811.0208 
504 |a Varadhan, S.R.S., Probability theory (2001) Courant Lecture Notes in Mathematics, 7. , (New York: Courant Institute of Mathemetical Sciences 
504 |a Wang, P., A formula for smooth ∞-harmonic functions (2006) Pan-Amer. Math. J., 1, pp. 57-65 
520 3 |a We review some recent results concerning tug-of-war games and their relation to some well-known partial differential equations (PDEs). In particular, we will show that solutions to certain PDEs can be obtained as limits of values of tug-of-war games when the parameter that controls the length of the possible movements goes to zero. Since the equations being studied are nonlinear and are not in divergence form, we will make extensive use of the concept of viscosity solutions. © 2011 Royal Society of Edinburgh.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The author thanks Fernando Charro, Jesus Garcia Azorero, Juan J. Manfredi and Mikko Parvianen for many useful suggestions and conversations. He also thanks Mayte Perez-Llanos for her continuous encouragement. This paper was partly supported by UBA X066 and CONICET, Argentina. 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina 
773 0 |d 2011  |g v. 141  |h pp. 319-369  |k n. 2  |p Proc. R. Soc. Edinburgh Sect. A Math.  |x 03082105  |t Proceedings of the Royal Society of Edinburgh Section A: Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960376317&doi=10.1017%2fS0308210510000041&partnerID=40&md5=4d5584e4f3e883156a8c7edf0d959b7c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1017/S0308210510000041  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03082105_v141_n2_p319_Rossi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03082105_v141_n2_p319_Rossi  |y Registro en la Biblioteca Digital 
961 |a paper_03082105_v141_n2_p319_Rossi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71649