Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands

The nitroprusside ion [Fe(CN)5NO]2- (NP) reacts with excess HS- in the pH range 8.5-12.5, in anaerobic medium ("Gmelin" reaction). The progress of the addition process of HS - into the bound NO+ ligand was monitored by stopped-flow UV/Vis/EPR and FTIR spectroscopy, mass spectrometry, and c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Quiroga, S.L
Otros Autores: Almaraz, A.E, Amorebieta, V.T, Perissinotti, L.L, Olabe, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 21125caa a22024377a 4500
001 PAPER-10682
003 AR-BaUEN
005 20230518204045.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79953189722 
024 7 |2 cas  |a ferrous ion, 15438-31-0; hydrogen sulfide, 15035-72-0, 7783-06-4; nitrogen oxide, 11104-93-1; nitroprusside sodium, 14402-89-2, 15078-28-1; Ferrous Compounds; Hydrogen Sulfide, 7783-06-4; Ligands; Nitrogen Oxides; Nitroprusside, 15078-28-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CEUJE 
100 1 |a Quiroga, S.L. 
245 1 0 |a Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands 
260 |c 2011 
270 1 0 |m Amorebieta, V. T.; Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Mar Del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina; email: amorebie@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a (2000) Nitric Oxide: Biology and Pathobiology, , (Ed.: L. J. Ignarro), Academic Press, San Diego 
504 |a (1996) Methods in Nitric Oxide Research, , (Eds.: M. Feelisch, J. S. Stamler), Wiley, New York 
504 |a McCleverty, J.A., (2004) Chem. Rev., 104, p. 403 
504 |a Ryter, S.W., Otterbein, L.E., (2004) BioEssays, 26, p. 270 
504 |a Wu, L., Wang, R., (2005) Pharmacol. Rev., 57, p. 585 
504 |a Ryter, S.W., Alam, J., Choi, A.M., (2006) Physiol. Rev., 86, p. 583 
504 |a Abe, K., Kimura, H., (1996) J. Neurosci., 16, p. 1066 
504 |a Furne, J., Saeed, A., Levitt, M.D., (2008) Am. J. Physiol., 295, p. 1479. , R 
504 |a Olson, K.R., Dombrowski, R.A., Russell, M.J., Doellman, M.M., Head, A.K., Whitfield, N.L., Madden, J.A., (2006) J. Exp. Biol., 209, p. 4011 
504 |a Hosoki, R., Matsuki, N., Kimura, H., (1997) Biochem. Biophys. Res. Commun., 237, p. 527 
504 |a Li, L., Moore, P.K., (2008) Trends in Pharmacological Sciences, 29, p. 84 
504 |a Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Wang, R., (2008) Science, 322, p. 587 
504 |a Eto, K., Kimura, H., (2002) J. Neurochem., 83, p. 80 
504 |a Nicholls, P., Kim, J.K., (1981) Biochim. Biophys. Acta, 637, p. 312 
504 |a Bailly, X., Vinogradov, S.J., (2005) J. Inorg. Biochem., 99, p. 142 
504 |a Weber, R.E., Vinogradov, S.N., (2001) Physiol. Rev., 81, p. 569 
504 |a Kuehn, C.K., Isied, S.S., (1980) Prog. Inorg. Chem., 27, p. 153 
504 |a Deutsch, E., Root, M.J., Nosco, D.L., (1983) Adv. Inorg. Bioinorg. Mech., p. 269 
504 |a Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., (2010) Inorg. Chem., 49, p. 1017 
504 |a Playfair, L., (1850) Annalen, 74, p. 317 
504 |a Sidgwick, N.V., (1950) The Chemical Elements and Their Compounds, Vol. II, p. 1315. , Oxford University Press, London, p 
504 |a Rock, P.A., Swinehart, J.H., (1966) Inorg. Chem., 5, p. 1078 
504 |a Kuban, V., Dasgupta, P.K., Marx, J.N., (1992) Anal. Chem., 64, p. 36 
504 |a Butler, A.R., Calsy-Harrison, A.M., Glidewell, C., (1988) Polyhedron, 7, p. 1197 
504 |a Bottomley, F., (1989) Reactions of Coordinated Ligands, Vol. 2, , in (Ed.: P. S. Braterman), Plenum, New York 
504 |a Olabe, J.A., (2008) Dalton Trans., p. 3633 
504 |a Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., (2007) Coord. Chem. Rev., 251, p. 1903 
504 |a Olabe, J.A., (2004) Adv. Inorg. Chem., 55, p. 61 
504 |a Szacilowski, K., Chmura, A., Stasicka, Z., (2005) Coord. Chem. Rev., 249, p. 2408 
504 |a Stamler, J.S., Toone, E.J., (2002) Curr. Opin. Chem. Biol., 6, p. 779 
504 |a Szacilowski, K., Stasicka, Z., (2001) Prog. React. Kinet. Mech., 26. , l 
504 |a Williams, D.L.H., (1999) Acc. Chem. Res., 32, p. 869 
504 |a Tchir, P.O., Spratley, R.D., (1975) Can. J. Chem., 53, p. 2318 
504 |a Nonella, M., Huber, J.R., Tae-Kyu, H., (1987) J. Phys. Chem., 91, p. 5203 
504 |a Lai, C.H., Li, E.Y., Chou, P.T., (2007) Theor. Chem. Acc., 117, p. 145 
504 |a Bharatam, P.V., Amita, Kumar, P.S., (2006) Int. J. Quantum Chem., 106, p. 1237 
504 |a Bharatam, P.V., Amita, (2002) Tetrahedron Lett., 43, p. 8289 
504 |a Butler, A.R., Megson, I.L., (2002) Chem. Rev., 102, p. 1155 
504 |a Zhao, Y., Brandish, P.E., Ballou, D.P., Marletta, M.A., (1999) Proc. Natl. Acad. Sci. USA, 96, p. 14753 
504 |a Niehs Spin Trap Database, , http://tools.niesh.nih.gov/stdb/index.cfm 
504 |a Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, p. 10307 
504 |a Alluisetti, G., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc., 126, p. 13432 
504 |a Koroleff, F., (1976) Methods of Seawater Analysis, p. 126. , in (Ed.: K. Grasshoft), VCH, Weinheim, p 
504 |a M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. Stratmann, J. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Rev. A7, Gaussian, Inc., Pittsburgh PA 1998; Perdew, J.P., Burke, K., Ernzenof, M., (1996) Phys. Rev. Lett., 77, p. 3865 
504 |a Cossi, M., Barone, V., Cammi, R., Tomasi, J., (1996) Chem. Phys. Lett., 255, p. 327 
504 |a Maseras, F., Morokuma, K., (1995) J. Comput. Chem., 16, p. 1170 
504 |a Humbel, S., Sieber, S., Morokuma, K., (1996) J. Chem. Phys., 105, p. 1959 
504 |a Svensson, M., Humbel, S., Froese, R.D., Matsubara, T., Sieber, S., Morokuma, K., (1996) J. Phys. Chem., 100, p. 19357 
504 |a Vreven, T., Morokuma, K., (2000) J. Comput. Chem., 21, p. 1419 
504 |a Rappe, A.K., Casewit, C.J., Colwell, K.S., Iii, W.A.G., Skiff, W.M., (1992) J. Am. Chem. Soc., 114, p. 10024 
504 |a Bauernschmitt, R., Ahlrichs, R., (1996) Chem. Phys. Lett., 256, p. 454 
504 |a Stratmann, R.E., Scuseria, G.E., Frisch, M.J., (1998) J. Chem. Phys., 109, p. 8218 
504 |a Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., (2006) J. Chem. Phys., 124, p. 094107 
504 |a Foresman, J.B., Head-Gordon, M., Pople, J.A., Frisch, M.J., (1992) J. Phys. Chem., 96, p. 135 
504 |a Zerner, M.C., Lowe, G.H., Kirchner, R.F., Mueller-Westerhoff, U.T., (1980) J. Am. Chem. Soc., 102, p. 589 
504 |a Tawa, G.J., Topol, I.A., Burt, S.K., Caldwell, R.A., Rasin, A.A., (1998) J. Chem. Phys., 109, p. 4852. , The Sackur-Tetrode equation can be found in 
504 |a McQuarrie, D.A., (1970) Statistical Mechanics, , Harper and Row, New York 
504 |a Kelly, C.P., Cramer, C.J., Truhlar, D.G., (2006) J. Phys. Chem. A, 110, p. 2493 
504 |a Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle, T.R., (1998) J. Phys. Chem. A, 102, p. 7787 
504 |a Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, p. 735 
504 |a Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899 
504 |a Humphrey, W., Dalke, A., Schulten, K., (1996) J. Molec. Graphics, 14, p. 33 
504 |a http://www.povray.org/download/, Persistence of Vision Pty. Ltd. 2004, Persistence of Vision Raytracer (Version 3.6) [computer software]; retrieved from; (2003) CRC Handbook of Chemistry and Physics, , 84 th ed. (Ed.: D. R. Lide), CRC Press 
504 |a Su, Y.S., Cheng, K.L., Jean, Y.C., (1997) Talanta, 44, p. 1757. , a new value of pKa=12.0 is reported for HS-, and the previous ones in the range 17-19 have been criticized 
504 |a Meyer, B., Ward, K., Koshlap, K., Peter, L., (1983) Inorg. Chem., 22, p. 2345. , a pKa of 17±1 has been proposed on the basis of previous UV and new Raman spectroscopic measurements 
504 |a The first spectra of Figures 5 and 6 show a similar dependence on the pH for the intensity and maximum wavelength, at constant R. Now, the maxima are attained at 570 and 535 nm at pH 9.5 and 11.5, respectively; Wilkins, R.G., (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes, , 2 nd ed., VCH, Weinheim 
504 |a The optimal conditions for observing the dependence of D with the pH, for [H+]≤laquo;K2, is R=10, for which D≈k-1. For the highest studied value of R=100, the relative contribution of k -1 to D is nearly 30 %. This fact is in agreement with the reported pH independence when the reaction was studied at R≥100. Thus, the line displayed in Figure 3 was calculated by fitting the data for R=10 and 30; Toma, H.E., Takasugi, M.S., (1983) J. Solution Chem., 12, p. 547 
504 |a Toma, H.E., Takasugi, M.S., (1989) J. Solution Chem., 18, p. 575 
504 |a Timpson, C.J., Bignozzi, C.A., Sullivan, B.P., Kober, E.M., Meyer, T.J., (1996) J. Phys. Chem., 100, p. 2915 
504 |a Slep, L.D., Baraldo, L.M., Olabe, J.A., (1996) Inorg. Chem., 35, p. 6327 
504 |a Waldhör, E., Kaim, W., Olabe, J.A., Slep, L.D., Fiedler, J., (1997) Inorg Chem., 36, p. 2969 
504 |a Estrin, D.A., Hamra, O.Y., Paglieri, L., Slep, L.D., Olabe, J.A., (1996) Inorg. Chem., 35, p. 6832 
504 |a Perissinotti, L.L., Estrin, D.A., Leitus, G., Doctorovich, F., (2006) J. Am. Chem. Soc., 128, p. 2512 
504 |a Perissinotti, L.L., Leitus, G., Shimon, L., Estrin, D.A., Doctorovich, F., (2008) Inorg. Chem., 47, p. 4723 
504 |a Arulsamy, N., Bohle, D.S., Butt, J.A., Irvine, G.J., Jordan, P.A., Sagan, E., (1999) J. Am. Chem. Soc., 121, p. 7115 
504 |a Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiu, G.L., Olabe, J.A., (2002) Inorg. Chem., 41, p. 5760 
504 |a Toma, H.E., Batista, A.A., Gray, H.B., (1982) J. Am. Chem. Soc., 104, p. 7509 
504 |a Lever, A.B.P., (1985) Inorganic Electronic Spectroscopy, , 2 nd ed., Elsevier, Amsterdam 
504 |a Olabe, J.A., Zerga, H.O., (1983) Inorg. Chem., 22, p. 4156 
504 |a Morando, P.J., Borghi, E.B., Schteingart, L.M., Blesa, M.A., (1981) J. Chem. Soc. Dalton Trans., p. 435 
504 |a Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, p. 893 
504 |a Szacilowski, K., Wanat, A., Barbieri, A., Wasielewska, E., Witko, M., Stochel, G., Stasicka, Z., (2002) New J. Chem., 26, p. 1495 
504 |a Wong, P.S.Y., Hyun, J., Fukuto, J.M., Shirota, F.N., Demaster, E.G., Shoeman, D.W., Nagasawa, H.T., (1998) Biochemistry, 37, p. 5362 
504 |a Dicks, A.P., Li, E., Munro, A., Swift, H.R., Williams, L.H., (1998) Can. J. Chem., 76, p. 789 
504 |a Singh, S.P., Wishnok, J.S., Keshive, M., Deen, W.M., Tannenbaum, S.R., (1996) Proc. Natl. Acad. Sci. USA, 93, p. 14428 
504 |a Arnelle, D.R., Stamler, J.S., (1995) Arch. Biochem. Biophys., 318, p. 279 
504 |a Cheney, R.P., Simic, M.J., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, p. 2187 
504 |a The assignment of the reaction in Equation (4) as a spontaneous decomposition of the adduct is supported by our complementary experiments in excess of NP, in which a very similar rate of [Fe(CN)5NO] 3- production has been observed; Das, T.N., Huie, R.E., Neta, P., Padmaja, S., (1999) J. Phys. Chem. A, 103, p. 5221 
504 |a Perissinotti, L.L., Turjanski, A.G., Estrin, D.A., Doctorovich, F., (2005) J. Am. Chem. Soc., 127, p. 486 
504 |a Formation of dominant NH3 and other reduction products (N 2O, NO, NH2OH) in the reactions of free nitrosothiolates with an excess of thiolate allowed proposing diverse structures for the intermediates and their further reactivity modes.[51] We rely on our calculations of the atomic charges for AH, A and a related nitrosothiolate (see Table SI6 in the Supporting Information), revealing that the most positively charged N atom in the Fe-NOS(H) moieties should be the expected site for the nucleophilic attack of HS-. The attack on the S atom of the NOSR group has also been considered for free and protonated nitrosothiolates. [50, 51a]; Miranda, K.M., (2005) Coord. Chem. Rev., 249, p. 433 
504 |a Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., Bari, S.E., Olabe, J.A., (2009) Angew. Chem. Int. Ed., 4823, p. 4213. , the inner-sphere route involving [Fe(CN)5N(OH)(SH) 2]3- appears as more favorable for the formation of [Fe(CN)5NO]4- than the sequential electron transfer implied in the two-electron "outer-sphere" reduction of NP. The second reduction step is a costly process (the half-wave potential is negatively displaced ≈1 V compared to the first one-electron conversion from [Fe(CN)5NO]2- to [Fe(CN)5NO] 3-).[59] 
504 |a Masek, J., Maslova, E., (1974) Coll. Czech. Chem. Commun., 39, p. 2141 
504 |a Xu, N., Yi, J., Richter-Addo, G.B., (2010) Inorg. Chem., 49, p. 6253 
504 |a Armor, J., (1973) Inorg. Chem., 12, p. 1959 
504 |a Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, p. 5876 
504 |a Murphy, W.R., Takeuchi, K., Barley, M.H., Meyer, T.J., (1986) Inorg. Chem., 25, p. 1041 
504 |a Barley, M.H., Rhodes, M.R., Meyer, T.J., (1987) Inorg. Chem., 26, p. 1746 
504 |a Rhodes, M.R., Barley, M.H., Meyer, T.J., (1991) Inorg. Chem., 30, p. 629 
504 |a Younathan, J.N., Wood, K.S., Meyer, T.J., (1992) Inorg. Chem., 31, p. 3280 
504 |a Wasser, I.M., De Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev., 102, p. 1201 
504 |a Doyle, M.P., Surrender, M.N., Broene, R.D., Guy, J.K., (1988) J. Am. Chem. Soc., 110, p. 593 
504 |a Schmidt, J., Kühr, H., Dorn, W.L., Kopf, J., (1974) Inorg. Nucl. Chem. Letters, 10, p. 55 
504 |a Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, p. 3914 
504 |a Glidewell, C., Johnson, I.L., (1987) Inorg. Chim. Acta, 132, p. 145 
504 |a Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E.J., (2001) Inorg. Chem., 40, p. 5704 
504 |a Reginato, N., McCrory, C.T.C., Pervitsky, D., Li, L., (1999) J. Am. Chem. Soc., 121, p. 10217 
504 |a Vanin, A.F., Serezhenkov, V.A., Mikoyan, V., Genkin, M.V., (1998) Nitric Oxide, 2, p. 224 
504 |a Butler, A.R., Glidewell, C., Hyde, A.R., Walton, J.C., (1985) Polyhedron, 4, p. 797 
504 |a Roncaroli, F., Van Eldik, R., Olabe, J.A., (2005) Inorg. Chem., 44, p. 2781 
504 |a Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, p. 6822 
504 |a Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 1039 
504 |a Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 2080 
504 |a Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, p. 231 
504 |a Bainbrigge, N., Butler, A.R., Görbitz, C.H., (1997) J. Chem. Soc. Perkin Trans. 2, p. 351 
504 |a Roncaroli, F., Olabe, J.A., (2005) Inorg. Chem., 44, p. 4719. , in the reactions of cysteine with several more oxidizing Ru-nitrosyl complexes (namely, [Ru(bpy)2ClNO]2+), a two-electron reduction has also been observed, with N2O, cystine and [Ru(bpy) 2Cl(H2O)]+ as products. Note that cysteine generates only the one-electron reduction product with NP. In fact, NP is a poor oxidizing compound within the series of related nitrosonium-complexes. [45] 
504 |a Videla, M., Roncaroli, F., Slep, L.D., Olabe, J.A., (2007) J. Am. Chem. Soc., 129, p. 278 
504 |a Goldstein, S., Czapski, G., (1995) J. Am. Chem. Soc., 117, p. 12078. , references therein 
520 3 |a The nitroprusside ion [Fe(CN)5NO]2- (NP) reacts with excess HS- in the pH range 8.5-12.5, in anaerobic medium ("Gmelin" reaction). The progress of the addition process of HS - into the bound NO+ ligand was monitored by stopped-flow UV/Vis/EPR and FTIR spectroscopy, mass spectrometry, and chemical analysis. Theoretical calculations were employed for the characterization of the initial adducts and reaction intermediates. The shapes of the absorbance-time curves at 535-575 nm depend on the pH and concentration ratio of the reactants, R=[HS -]/[NP]. The initial adduct [Fe(CN)5N(O)SH]3- (AH, Î max≈570 nm) forms in the course of a reversible process, with kad=190±20 M-1 s-1, k -ad=0.3±0.05 s-1. Deprotonation of AH (pK a=10.5±0.1, at 25.0 °C, I=1 M), leads to [Fe(CN) 5N(O)S]4- (A, Î max=535 nm, ε=6000±300 M-1 cm-1). [Fe(CN) 5NO].3- and HS2. 2- radicals form through the spontaneous decomposition of AH and A. The minor formation of the [Fe(CN)5NO]3- ion equilibrates with [Fe(CN)4NO]2- through cyanide labilization, and generates the "g=2.03" iron-dinitrosyl, [Fe(NO)2(SH) 2]-, which is labile toward NO release. Alternative nucleophilic attack of HS- on AH and A generates the reactive intermediates [Fe(CN)5N(OH)(SH)2]3- and [Fe(CN)5N(OH)(S)(SH)]4-, respectively, which decompose through multielectronic nitrosyl reductions, leading to NH3 and hydrogen disulfide, HS2-. N2O is also produced at pH≥11. Biological relevance relates to the role of NO, NO-, and other bound intermediates, eventually able to be released to the medium and rapidly trapped by substrates. Structure and reactivity comparisons of the new nitrososulfide ligands with free and bound nitrosothiolates are provided. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.  |l eng 
593 |a Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Mar Del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/INQUIMAE/CONICET, Pabellõn 2, C1428EHA Buenos Aires, Argentina 
690 1 0 |a ADDITION REACTION 
690 1 0 |a IRON 
690 1 0 |a N LIGANDS 
690 1 0 |a NITROSOSULFIDE LIGANDS 
690 1 0 |a NITROSYL 
690 1 0 |a SULFUR 
690 1 0 |a ABSORBANCE-TIME CURVES 
690 1 0 |a CONCENTRATION RATIO 
690 1 0 |a FTIR SPECTROSCOPY 
690 1 0 |a N LIGANDS 
690 1 0 |a NITROSOSULFIDE LIGANDS 
690 1 0 |a NITROSYL 
690 1 0 |a NO RELEASE 
690 1 0 |a NUCLEOPHILIC ATTACK 
690 1 0 |a PH RANGE 
690 1 0 |a REACTIVE INTERMEDIATE 
690 1 0 |a REDOX REACTIVITY 
690 1 0 |a REVERSIBLE PROCESS 
690 1 0 |a STOPPED FLOW 
690 1 0 |a THEORETICAL CALCULATIONS 
690 1 0 |a ADDITION REACTIONS 
690 1 0 |a CHEMICAL ANALYSIS 
690 1 0 |a CYANIDES 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a HYDRAULIC STRUCTURES 
690 1 0 |a HYDROGEN 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a REACTION INTERMEDIATES 
690 1 0 |a REACTION KINETICS 
690 1 0 |a SULFUR 
690 1 0 |a LIGANDS 
690 1 0 |a FERROUS ION 
690 1 0 |a HYDROGEN SULFIDE 
690 1 0 |a LIGAND 
690 1 0 |a NITROGEN OXIDE 
690 1 0 |a NITROPRUSSIDE SODIUM 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMICAL STRUCTURE 
690 1 0 |a CHEMISTRY 
690 1 0 |a KINETICS 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a STEREOISOMERISM 
690 1 0 |a ULTRAVIOLET SPECTROPHOTOMETRY 
690 1 0 |a FERROUS COMPOUNDS 
690 1 0 |a HYDROGEN SULFIDE 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a KINETICS 
690 1 0 |a LIGANDS 
690 1 0 |a MOLECULAR STRUCTURE 
690 1 0 |a NITROGEN OXIDES 
690 1 0 |a NITROPRUSSIDE 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a SPECTROPHOTOMETRY, ULTRAVIOLET 
690 1 0 |a STEREOISOMERISM 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
700 1 |a Almaraz, A.E. 
700 1 |a Amorebieta, V.T. 
700 1 |a Perissinotti, L.L. 
700 1 |a Olabe, J.A. 
773 0 |d 2011  |g v. 17  |h pp. 4145-4156  |k n. 15  |p Chem. Eur. J.  |x 09476539  |w (AR-BaUEN)CENRE-83  |t Chemistry - A European Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953189722&doi=10.1002%2fchem.201002322&partnerID=40&md5=7f88afd8e9903201d87f82a663c8b0e0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/chem.201002322  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09476539_v17_n15_p4145_Quiroga  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v17_n15_p4145_Quiroga  |y Registro en la Biblioteca Digital 
961 |a paper_09476539_v17_n15_p4145_Quiroga  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71635