Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sigrist, M.
Otros Autores: Albertengo, A., Beldoménico, H., Tudino, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13129caa a22015617a 4500
001 PAPER-10673
003 AR-BaUEN
005 20230518204044.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79952484956 
024 7 |2 cas  |a arsenic, 7440-38-2; bicarbonate, 144-55-8, 71-52-3; chloride, 16887-00-6; hydrochloric acid, 7647-01-0; nitrate, 14797-55-8; oxygen, 7782-44-7; sodium borohydride, 16940-66-2; sodium hydroxide, 1310-73-2; sulfate, 14808-79-8; Arsenic, 7440-38-2; Arsenicals; Water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JHMAD 
100 1 |a Sigrist, M. 
245 1 0 |a Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry 
260 |c 2011 
270 1 0 |m Sigrist, M.; Laboratorio Central, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe, Argentina; email: msigrist@fiq.unl.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a (2001), WHO, Environmental Health Criteria 224, 2nd ed., Arsenic Compounds, World Health Organization, Geneva; Smedley, P., Kinniburgh, D., A review of the source, behavior and distribution of arsenic in natural waters (2002) Appl. Geochem., 17, pp. 517-568 
504 |a Mandal, B., Suzuki, K., Arsenic round the world: a review (2002) Talanta, 58, pp. 201-235 
504 |a Smedley, P., Edmunds, W., Pelig-Ba, K., Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health (1996) Geol. Soc., 113, pp. 163-181 
504 |a Chen, M., Lena, Q., Hoogeweg, C., Harris, W., Arsenic background concentrations in Florida, U.S.A. surface soils: determination and interpretation (2001) Environ. Forensics, 2, pp. 117-126 
504 |a Walker, M., Seiler, R., Meinert, M., Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater (2008) Sci. Total Environ., 389, pp. 245-252 
504 |a Bednar, A., Garbarino, J., Ranville, J., Wildeman, T., Effects of iron on arsenic speciation and redox chemistry in acid mine water (2005) J. Geochem. Exploration, 85, pp. 55-62 
504 |a Chen, H., Frey, M., Clifford, D., McNeil, L., Edwards, M., Arsenic treatment considerations (1999) J. Am. Water Works Assoc., 91, pp. 74-85 
504 |a (1993), WHO, Guidelines for Drinking Water Quality, Volume 1: Recommendations, 2nd ed., World Health Organization, Geneva; (2001), US Environmental Protection Agency,National Primary Drinking Water Regulations, Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring, Final Rule, 40 CFR Parts 141-142, 66(14), 6976; (1998), CE, Drinking Water Directive (DWD), Council Directive 98/83/CE; (2007), Ministerio de Salud y Acción Social de La República Argentina, Código Alimentario Argentino, Capítulo XII; Petrick, J., Ayala-Fierro, F., Cullen, W., Carter, D., Aposhian, H., Monomethylarsonous acid (MMAIII) is more toxic than arsenite in chang human hepatocytes (2000) Toxicol. Appl. Pharmacol., 163, pp. 203-207 
504 |a Morales, K., Ryan, L., Brown, K., Kuo, T., Wu, M., Chen, C., Risk of internal cancers from arsenic in drinking water (2000) Environ. Health Perspect., 108, pp. 655-661 
504 |a Clewell, H., Barton, H., Gentry, P., Shipp, A., Yager, J., Andersen, M., Requirements for a biologically realistic cancer risk assessment for inorganic arsenic (1999) Int. J. Toxicol., 18 (2), pp. 131-147 
504 |a Dedina, J., Tsalev, D., (1995) Hydride Generation Atomic Absorption Spectrometry, , Wiley & Sons Inc., Chichester 
504 |a Anderson, R., Thompson, M., Culbard, E., Selective reduction of arsenic species by continuous hydride generation. Part I. Reaction media (1986) Analyst, 111, pp. 1143-1152 
504 |a Torralba, R., Bonilla, M., Palacios, A., Cámara, C., Flow injection analysis and continuous flow systems to determine As(III) and As(V) by hydride generation atomic absorption spectrometry (1994) Analusis, 22, pp. 478-482 
504 |a Coelho, N., Cósmen da Silva, A., Moraes da Silva, C., Determination of As(III) and total inorganic arsenic by flow injection hydride generation atomic absorption spectrometry (2002) Anal. Chim. Acta, 460, pp. 227-233 
504 |a Anthemidis, A., Zachariadis, G., Stratis, J., Determination of arsenic(III) and total inorganic arsenic in water samples using an on-line sequential insertion system and hydride generation atomic absorption spectrometry (2005) Anal. Chim. Acta, 547, pp. 237-242 
504 |a Sigrist, M., Beldoménico, H., Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations (2004) Spectrochim. Acta Part B, 59, pp. 1041-1045 
504 |a Gonzalvez, A., Cervera, M., Armenta, S., de La Guardia, M., A review of non-chromatographic methods for speciation analysis (2009) Anal. Chim. Acta, 636, pp. 129-157 
504 |a Narcise, C., Coo, L., del Mundo, F., On-line preconcentration and speciation of arsenic by flow injection hydride generation atomic absorption spectrophotometry (2005) Talanta, 68, pp. 298-304 
504 |a Yalcin, S., Le, X.L., Low pressure chromatographic separation of inorganic arsenic species using solid phase extraction cartridges (1998) Talanta, 47, pp. 787-796 
504 |a Le, X., Yalcin, S., Ma, M., Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection (2000) Environ. Sci. Technol., 34, pp. 2342-2347 
504 |a Hall, G., Pelchat, J., Gauthier, G., Stability of inorganic arsenic(III) and arsenic(V) in water samples (1999) J. Anal. At. Spectrom., 14, pp. 205-231 
504 |a Sigrist, M., Beldoménico, H., Tudino, M., Determination of As(III) in nonacidified groundwater samples for inorganic speciation analysis using flow injection hydride generation atomic absorption spectrometry (2010) Spectrosc. Lett., 43, pp. 458-464 
504 |a Massart, D., Vandeginste, B., Buydens, L., De Jong, S., Lewi, P., (1997) Smeyers-Verbeke Handbook ok Chemometrics and Qualimetrics: Part A, , Elsevier, Science B.V, Amsterdam, The Netherlands, B. Vandeginste, S. Rutan (Eds.) 
504 |a Miller, J.C., Miller, J.N., (1988) Statistics for Analytical Chemistry, , Ellis Horwood Limited, Great Britain 
504 |a Duarte, F.A., Pereira, J.S.F., Mesko, M.F., Goldschmidt, F., Flores, E.M.M., Dressler, V.L., Evaluation of liquid chromatography inductively coupled plasma mass spectrometry for arsenic speciation in water from industrial treatment of shale (2007) Spectrochim. Acta Part B, 62, pp. 978-984 
520 3 |a A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH3 generation using 3.5molL-1 HCl as carrier solution and 0.35% (m/v) NaBH4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl-, SO4 2-, NO3 -, HPO4 2-, HCO3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C6H8O6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5μgL-1 and 0.6μgL-1 for As(III) and inorganic total As, respectively, were obtained for a 500μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60samplesh-1. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and anion-exchange cartridges. Advantages derived from this approach were evaluated. HPLC-ICPMS was employed to study the consistency of the analytical results. © 2011 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional del Litoral 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors are grateful to Dr. Erico Marlon de Moraes Flores of Department of Chemistry, Universidade Federal de Santa María, Brazil, for his valuable collaboration in the comparison of results by HPLC–ICP–MS. They also acknowledge UBA , UNL and CONICET for financial support. 
593 |a Laboratorio Central, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe, Argentina 
593 |a Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellón II, Ciudad Universitaria (1428), Buenos Aires, Argentina 
690 1 0 |a AAS 
690 1 0 |a ARSENIC SPECIATION 
690 1 0 |a FLOW INJECTION 
690 1 0 |a HYDRIDE GENERATION 
690 1 0 |a ON-LINE SEPARATION 
690 1 0 |a AAS 
690 1 0 |a ARSENIC SPECIATION 
690 1 0 |a FLOW INJECTION 
690 1 0 |a HYDRIDE GENERATION 
690 1 0 |a ON-LINE SEPARATION 
690 1 0 |a ABSORPTION SPECTROSCOPY 
690 1 0 |a ARSENIC 
690 1 0 |a ATOMIC ABSORPTION SPECTROMETRY 
690 1 0 |a CHLORINE COMPOUNDS 
690 1 0 |a EFFLUENT TREATMENT 
690 1 0 |a GROUNDWATER 
690 1 0 |a HYDROCHLORIC ACID 
690 1 0 |a INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 
690 1 0 |a MASS SPECTROMETERS 
690 1 0 |a NEGATIVE IONS 
690 1 0 |a OPTIMIZATION 
690 1 0 |a OXYGEN 
690 1 0 |a POTASSIUM IODIDE 
690 1 0 |a PROJECTILES 
690 1 0 |a QUARTZ 
690 1 0 |a WATER ABSORPTION 
690 1 0 |a WATER INJECTION 
690 1 0 |a WATER POLLUTION 
690 1 0 |a WATER QUALITY 
690 1 0 |a EXTRACTION 
690 1 0 |a ARSENIC 
690 1 0 |a BICARBONATE 
690 1 0 |a CHLORIDE 
690 1 0 |a GROUND WATER 
690 1 0 |a HYDROCHLORIC ACID 
690 1 0 |a NITRATE 
690 1 0 |a OXYGEN 
690 1 0 |a SODIUM BOROHYDRIDE 
690 1 0 |a SODIUM HYDROXIDE 
690 1 0 |a SULFATE 
690 1 0 |a ARSENIC 
690 1 0 |a BICARBONATE 
690 1 0 |a CHLORIDE 
690 1 0 |a EXTRACTION METHOD 
690 1 0 |a GROUNDWATER RESOURCE 
690 1 0 |a HYDROCHLORIC ACID 
690 1 0 |a INORGANIC COMPOUND 
690 1 0 |a ION EXCHANGE 
690 1 0 |a NITRATE 
690 1 0 |a SPECIATION (CHEMISTRY) 
690 1 0 |a SPECTROMETRY 
690 1 0 |a SULFATE 
690 1 0 |a WATER QUALITY 
690 1 0 |a ACIDIFICATION 
690 1 0 |a ANION EXCHANGE 
690 1 0 |a ARTICLE 
690 1 0 |a ATOMIC ABSORPTION SPECTROMETRY 
690 1 0 |a FLOW INJECTION ANALYSIS 
690 1 0 |a HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a SOLID PHASE EXTRACTION 
690 1 0 |a WATER ANALYSIS 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a WATER QUALITY 
690 1 0 |a ARSENIC 
690 1 0 |a ARSENICALS 
690 1 0 |a EQUIPMENT DESIGN 
690 1 0 |a LIMIT OF DETECTION 
690 1 0 |a SOLID PHASE EXTRACTION 
690 1 0 |a SPECTROPHOTOMETRY, ATOMIC 
690 1 0 |a WATER 
690 1 0 |a WATER SUPPLY 
650 1 7 |2 spines  |a PH 
700 1 |a Albertengo, A. 
700 1 |a Beldoménico, H. 
700 1 |a Tudino, M. 
773 0 |d 2011  |g v. 188  |h pp. 311-318  |k n. 1-3  |p J. Hazard. Mater.  |x 03043894  |w (AR-BaUEN)CENRE-5603  |t Journal of Hazardous Materials 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952484956&doi=10.1016%2fj.jhazmat.2011.01.126&partnerID=40&md5=237edbd4a093b7c034e76a889356292a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jhazmat.2011.01.126  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03043894_v188_n1-3_p311_Sigrist  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043894_v188_n1-3_p311_Sigrist  |y Registro en la Biblioteca Digital 
961 |a paper_03043894_v188_n1-3_p311_Sigrist  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71626