Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol-gel route

Silica matrices synthesized from a pre-hydrolysis step in ethanol followed by alcohol removal at low pressure distillation, and condensation in water, are suitable for encapsulation of biomolecules and microorganisms and building bioactive materials with optimized optical properties. Here we analyze...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perullini, M.
Otros Autores: Jobbágy, M., Bilmes, S.A, Torriani, I.L, Candal, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15525caa a22013337a 4500
001 PAPER-10508
003 AR-BaUEN
005 20230518204033.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80051544589 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JSGTE 
100 1 |a Perullini, M. 
245 1 0 |a Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol-gel route 
260 |c 2011 
270 1 0 |m Perullini, M.; INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Buenos Aires C1428EHA, Argentina; email: mercedesp@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Brinker, C.J., Scherer, G., (1990) Sol Gel Science, , Academic Press San Diego 
504 |a Gill, I., Ballesteros, A., Encapsulation of biologicals within silicate, siloxane, and hybrid sol- gel polymers: An efficient and generic approach (1998) Journal of the American Chemical Society, 120 (34), pp. 8587-8598. , DOI 10.1021/ja9814568 
504 |a Avnir, D., Brown, S., Lev, O., Ottolenghi, M., Enzymes and other proteins entrapped in sol-gel materials (1994) Chem Mater, 6 (10), pp. 1605-1614. , 10.1021/cm00046a008 1:CAS:528:DyaK2cXlvF2rsLo%3D 
504 |a Avnir, D., Lev, O., Livage, J., Recent bio-applications of sol-gel materials (2006) Journal of Materials Chemistry, 16 (11), pp. 1013-1030. , DOI 10.1039/b512706h 
504 |a Livage, J., Coradin, T., Living cells in oxide glasses (2006) Rev Mineral Geochem, 64 (1), pp. 315-332. , 10.2138/rmg.2006.64.10 1:CAS:528:DC%2BD2sXkslKnsw%3D%3D 
504 |a Soltmann, U., Böttcher, H., Utilization of sol-gel ceramics for the immobilization of living microorganisms (2008) J Sol-Gel Sci Technol, 342, p. 211 
504 |a Meunier, C.F., Dandoy, P., Su, B.-L., Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials (2010) J Colloid Interface Sci, 48, pp. 66-72 
504 |a Premkumar, J.R., Lev, O., Marks, R.S., Polyak, B., Rosen, R., Belkin, S., Antibody-based immobilization of bioluminescent bacterial sensor cells (2001) Talanta, 55 (5), pp. 1029-1038. , DOI 10.1016/S0039-9140(01)00533-1, PII S0039914001005331 
504 |a Perullini, M., Rivero, M.M., Jobbagy, M., Mentaberry, A., Bilmes, S.A., Plant cell proliferation inside an inorganic host (2007) Journal of Biotechnology, 127 (3), pp. 542-548. , DOI 10.1016/j.jbiotec.2006.07.024, PII S0168165606006365 
504 |a Fiedler, D., Hager, U., Franke, H., Soltmann, U., Bottcher, H., Algae biocers: Astaxanthin formation in sol-gel immobilised living microalgae (2007) Journal of Materials Chemistry, 17 (3), pp. 261-266. , DOI 10.1039/b613455f 
504 |a Kuncova, G., Podrazky, O., Ripp, S., Trögl, J., Sayler, G.S., Demnerova, K., Vankova, R., Monitoring of the viability of cells immobilized by sol-gel process (2004) J Sol-Gel Sci Technol, 31, pp. 1-8. , 10.1023/B:JSST.0000048013.64235.c8 
504 |a Nguyen-Ngoc, H., Durrieu, C., Tran-Minh, C., Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides (2009) Ecotoxicol Environ Saf, 72, pp. 316-320. , 10.1016/j.ecoenv.2008.04.016 1:CAS:528:DC%2BD1cXhtlaqtbbN 
504 |a Sicard, C., Perullini, M., Spedalieri, C., Coradin, T., Brayner, R., Livage, J., Jobbagy, M., Bilmes, S.A., CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels (2011) Chem Mater, 23 (6), pp. 1374-1378. , 1:CAS:528:DC%2BC3MXit1WjsLw%3D 
504 |a Perullini, M., Jobbagy, M., Moretti, M.B., Garcia, S.C., Bilmes, S.A., Optimizing silica encapsulation of living cells: In situ evaluation of cellular stress (2008) Chemistry of Materials, 20 (9), pp. 3015-3021. , DOI 10.1021/cm703075b 
504 |a Brumberger, H., Modern aspects of small-angle scattering (1993) Proceedings of the NATO Advanced Study Institutes, , Como, Italy 
504 |a Schmidt, P.W., Höhr, A., Neumann, H.-B., Kaiser, H., Avnir, D., Lin, J.S., Small angle X-ray scattering study of the fractal morphology of porous silicas (1989) J Chem Phys, 90 (9), pp. 5016-5023. , 10.1063/1.456544 1:CAS:528:DyaL1MXlt1WnsLk%3D 
504 |a Vollet, D.R., Donatti, D.A., Ibãez Ruiz, A., De Vicente, F.S., Dynamical scaling in fractal structures in the aggregation of tetraethoxysilane-derived sonogels (2010) J Appl Cryst, 43 (5), pp. 949-954. , 10.1107/S0021889810025161 1:CAS:528:DC%2BC3cXhtFOqsbjM 
504 |a Zarzycki, J., Fractal properties of gels (1987) J Non-Cryst Solids, 9596 (1), pp. 173-184. , 10.1016/S0022-3093(87)80108-4 
504 |a Schaefer, D.W., Keefer, K.D., Fractal geometry of silica condensation polymers (1984) Phys Rev Lett, 53 (14), pp. 1383-1386. , 10.1103/PhysRevLett.53.1383 1:CAS:528:DyaL2MXjtVKmsw%3D%3D 
504 |a Mandelbrot, B.B., (1983) The Fractal Geometry of Nature, , Freeman San Francisco 
504 |a Kim, S., Lee, K.-S., Zachariah, M.R., Lee, D., Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates (2010) J Colloid Interface Sci, 344, pp. 353-361. , 10.1016/j.jcis.2010.01.008 1:CAS:528:DC%2BC3cXjtFKjsbs%3D 
504 |a Schaefer, D.W., Martin, J.E., Wiltzius, P., Cannell, D.S., Fractal geometry of colloidal aggregates (1984) Phys Rev Lett, 52 (26), pp. 2371-2374. , 10.1103/PhysRevLett.52.2371 1:CAS:528:DyaL2cXks1Skt7c%3D 
504 |a Vollet, D.R., Donatti, D.A., Ibanez Ruiz, A., A SAXS study of kinetics of aggregation of TEOS-derived sonogels at different temperatures (2001) Journal of Non-Crystalline Solids, 288 (1-3), pp. 81-87. , DOI 10.1016/S0022-3093(01)00607-X, PII S002230930100607X 
504 |a Brinker, C.J., Keefer, K.D., Schaefer, D.W., Assink, R.A., Kay, B.D., Ashley, C.S., Sol gel transition in simple silicates (1984) J Non-Cryst Solids, 63, pp. 45-59. , 10.1016/0022-3093(84)90385-5 1:CAS:528:DyaL2cXhs1Srsr4%3D 
504 |a Strawbridge, I., Craievich, A.F., James, P.F., Effect of the h 2 o/teos ratio on the structure of gels derived by the acid catalysed hydrolysis of tetraethoxysilane (1985) Journal of Non-Crystalline Solids, 72 (1), pp. 139-157. , DOI 10.1016/0022-3093(85)90170-X 
504 |a Himmel, B., Gerber, Th., Burger, H., WAXS- and SAXS-investigations of structure formation in alcoholic SiO 2 solutions (1990) Journal of Non-Crystalline Solids, 119 (1), pp. 1-13. , DOI 10.1016/0022-3093(90)90234-D 
504 |a Reichenauer, G., Thermal aging of silica gels in water (2004) J Non-Cryst Solids, 350, pp. 189-195. , 10.1016/j.jnoncrysol.2004.07.073 1:CAS:528:DC%2BD2cXhtVGkur%2FF 
504 |a Bhatia, R.B., Brinker, C.J., Gupta, A.K., Singh, A.K., Aqueous sol-gel process for protein encapsulation (2000) Chem Mater, 12, pp. 2434-2441. , 10.1021/cm000260f 1:CAS:528:DC%2BD3cXltVOjt7g%3D 
504 |a Coiffier, A., Coradin, T., Roux, C., Bouvet, O.M.M., Livage, J., Sol-gel encapsulation of bacteria: A comparison between alkoxide and aqueous routes (2001) Journal of Materials Chemistry, 11 (8), pp. 2039-2044. , DOI 10.1039/b101308o 
504 |a Nassif, N., Roux, C., Coradin, T., Rager, M.N., Bouvet, O., Livage, J., A sol-gel matrix to preserve the viability of encapsulated bacteria (2003) Mater Chem, 13, pp. 203-208. , 10.1039/b210167j 1:CAS:528:DC%2BD3sXps1Chsw%3D%3D 
504 |a Gerberb, T., Himmel, B., Bürger, H., WAXS- and SAXS-investigations of structure formation of gels from sodium water glass (1994) J Non-Cryst Solids, 175, pp. 160-168. , 10.1016/0022-3093(94)90008-6 
504 |a Perullini, M., Amoura, M., Roux, C., Coradin, T., Livage, J., Japas, M.L., Jobbagy, M., Bilmes, S.A., Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors (2011) J Mater Chem, 21, pp. 4546-4552. , 10.1039/c0jm03948a 1:CAS:528:DC%2BC3MXivFygu70%3D 
504 |a Ferrer, M.L., Del Monte, F., Levy, D., A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins (2002) Chem Mater, 14, pp. 3619-3621. , 10.1021/cm025562r 1:CAS:528:DC%2BD38XmtVymu7s%3D 
504 |a Ferrer, M.L., Yuste, L., Rojo, F., Del Monte, F., Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrixes (2003) Chem Mater, 15, pp. 3614-3618. , 10.1021/cm034372t 1:CAS:528:DC%2BD3sXmsVOnsrk%3D 
504 |a Ferrer, M.L., García-Carbajal, Z.Y., Yuste, L., Rojo, F., Del Monte, F., Bacteria viability in sol-gel materials revisited: Cryo-SEM as a suitable tool to study the structural integrity of encapsulated bacteria (2006) Chem Mater, 18, pp. 1458-1463. , 10.1021/cm0522275 1:CAS:528:DC%2BD28Xhtlekurw%3D 
504 |a Cavalcanti, L.P., Torriani, I.L., Plivelic, T.S., Oliveira, C.L.P., Kellermann, G., Neuenschwander, R., Two new sealed sample cells for small angle x-ray scattering from macromolecules in solution and complex fluids using synchrotron radiation (2004) Review of Scientific Instruments, 75 (11), pp. 4541-4546. , DOI 10.1063/1.1804956 
504 |a http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html; Vinogradova, E., Moreno, A., Lara, V.H., Bosch, P., Multi-fractal imaging and structural investigation of silica hydrogels and aerogels (2003) Silicon Chem, 2, pp. 247-254. , 10.1007/s11201-005-3391-1 
504 |a Vinogradova, E., Moreno, A., Lara, V.H., Bosch, P., Multi-fractal imaging and structural investigation of silica hydrogels and aerogels (2003) Silicon Chem, 2, pp. 247-254. , 10.1007/s11201-005-3391-1 
504 |a Avnir, D., Biham, O., Lidar, D., Malcai, O., Is the geometry of nature fractal? (1998) Science, 279 (5347), pp. 39-40. , DOI 10.1126/science.279.5347.39 
504 |a Sorensen, C.M., Wang, G.M., Size distribution effect on the power law regime of the structure factor of fractal aggregates (1999) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (6 B), pp. 7143-7148 
504 |a Knoblich, B., Gerber, Th., Aggregation in SiO 2 sols from sodium silicate solutions (2001) Journal of Non-Crystalline Solids, 283 (1-3), pp. 109-113. , DOI 10.1016/S0022-3093(01)00356-8, PII S0022309301003568 
504 |a Boukari, H., Lin, J.S., Harris, M.T., Small-angle X-ray scattering study of the formation of colloidal silica particles from alkoxides: Primary particles or not? (1997) Journal of Colloid and Interface Science, 194 (2), pp. 311-318. , DOI 10.1006/jcis.1997.5112 
504 |a Knoblich, B., Gerber, Th., The arrangement of fractal clusters dependent on the pH value in silica gels from sodium silicate solutions (2001) Journal of Non-Crystalline Solids, 296 (1-2), pp. 81-87. , DOI 10.1016/S0022-3093(01)00871-7, PII S0022309301008717 
504 |a Beelen, T.P.M., Pwjg, W., Vonk, C.G., Van Santen, R.A., (1989) Catal Lett, 3, p. 209. , 10.1007/BF00766395 1:CAS:528:DyaL1MXmsVSqs7Y%3D 
504 |a Bohren, C.G., Huffmann, D.F., (1983) Absorption and Scattering of Light by Small Particles, , Wiley New York 
520 3 |a Silica matrices synthesized from a pre-hydrolysis step in ethanol followed by alcohol removal at low pressure distillation, and condensation in water, are suitable for encapsulation of biomolecules and microorganisms and building bioactive materials with optimized optical properties. Here we analyze the microstructure of these hydrogels from the dependence of I(q) data acquired from SAXS experiments over a wide range of silica concentration and pH employed in the condensation step. From the resulting data it is shown that there is a clear correlation between the microscopic parameters-cluster fractal dimension (D), elementary particle radius (a) and cluster gyration radius (R)-with the attenuation of visible light when the condensation step proceeds at pH < 6. At higher pHs, there is a steep dependence of the cluster density (~R D-3 ) with the condensation pH, and non-monotonous changes of attenuance are less than 20%, revealing the complexity of the system. These results, which were obtained for a wide pH and silica concentration range, reinforce the idea that the behavior of gels determined in a restricted interval of synthesis variables cannot be extrapolated, and comparison of gelation times is not enough for predicting their properties. © 2011 Springer Science+Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT X-003 
536 |a Detalles de la financiación: 011/02 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: PIP 11220080102533 
536 |a Detalles de la financiación: Laboratório Nacional de Luz Síncrotron, LNLS, D11A-SAXS-6039 
536 |a Detalles de la financiación: Acknowledgements This work has been supported by the Brazilian Synchrotron Light Laboratory (LNLS, Brazil, proposal D11A-SAXS-6039), the scientific collaboration agreement CAPES-SECyT (Brazil- Argentina, 011/02), the University of Buenos Aires (UBACyT X-003), and by National Research Council of Argentina (CONICET PIP 11220080102533). SAB, RC, MJ and MP are Research Scientists of CONICET (Argentina). 
593 |a INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Buenos Aires C1428EHA, Argentina 
593 |a ECyT, Universidad Nacional de San Martín, Campus Miguelete, San Martín, Buenos Aires, Argentina 
593 |a Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, Brazil 
690 1 0 |a OPTICAL QUALITY 
690 1 0 |a SAXS MICROSTRUCTURE CHARACTERIZATION 
690 1 0 |a SILICA HYDROGELS 
690 1 0 |a TEOS ALCOHOL-FREE 
690 1 0 |a BIOACTIVE MATERIAL 
690 1 0 |a CLUSTER DENSITIES 
690 1 0 |a GYRATION RADII 
690 1 0 |a LOW PRESSURES 
690 1 0 |a OPTICAL QUALITIES 
690 1 0 |a SAXS MICROSTRUCTURE CHARACTERIZATION 
690 1 0 |a SILICA CONCENTRATIONS 
690 1 0 |a SILICA MATRIX 
690 1 0 |a SOL-GEL ROUTES 
690 1 0 |a SYNTHESIS CONDITIONS 
690 1 0 |a TEOS ALCOHOL-FREE 
690 1 0 |a VISIBLE LIGHT 
690 1 0 |a COAGULATION 
690 1 0 |a CONDENSATION 
690 1 0 |a DISTILLATION 
690 1 0 |a ELEMENTARY PARTICLES 
690 1 0 |a ETHANOL 
690 1 0 |a FRACTAL DIMENSION 
690 1 0 |a GELATION 
690 1 0 |a GELS 
690 1 0 |a HYDROGELS 
690 1 0 |a OPTICAL PROPERTIES 
690 1 0 |a PRESSURE EFFECTS 
690 1 0 |a SILICA 
690 1 0 |a SOL-GEL PROCESS 
690 1 0 |a MICROSTRUCTURE 
700 1 |a Jobbágy, M. 
700 1 |a Bilmes, S.A. 
700 1 |a Torriani, I.L. 
700 1 |a Candal, R. 
773 0 |d 2011  |g v. 59  |h pp. 174-180  |k n. 1  |p J Sol Gel Sci Technol  |x 09280707  |t Journal of Sol-Gel Science and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80051544589&doi=10.1007%2fs10971-011-2478-8&partnerID=40&md5=64722966a537e3c81b52bd2bcb445e25  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10971-011-2478-8  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09280707_v59_n1_p174_Perullini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09280707_v59_n1_p174_Perullini  |y Registro en la Biblioteca Digital 
961 |a paper_09280707_v59_n1_p174_Perullini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71461