Casein glycomacropeptide pH-driven self-assembly and gelation upon heating

Casein glycomacropeptide (CMP) found in cheese whey is a C-terminal hydrophilic glycopeptide released from κ-casein by the action of chymosin during cheese making. In a previous work a self-assembly model for CMP at room temperature was proposed, involving a first step of hydrophobic assembly follow...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martinez, M.J
Otros Autores: Farías, M.E, Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08796caa a22006857a 4500
001 PAPER-10487
003 AR-BaUEN
005 20230518204032.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79952538103 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Martinez, M.J. 
245 1 0 |a Casein glycomacropeptide pH-driven self-assembly and gelation upon heating 
260 |c 2011 
270 1 0 |m Pilosof, A.M.R.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: apilosof@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aguilera, J.M., Xiong, Y.L., Kinsella, J.E., Viscoelastic properties of mixed dairy gels (1993) Food Research International, 26, pp. 11-17 
504 |a Brody, E.P., Biological activities of bovine glycomacropeptide (2000) British Journal of Nutrition, 84 (1), pp. S39-S46 
504 |a Bryant, C.M., McClements, D.J., Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey (1998) Trend in Food Science and Technology, 9, pp. 143-151 
504 |a Burton, J., Skudder, P.J., (1987), Whey proteins. UK patent application GB 2188526 A1; Coolbear, K.P., Elgar, D.F., Ayers, J.S., Profiling of genetic variants of bovine κ-casein macropeptide by electrophoretic and chromatographic techniques (1996) International Dairy Journal, 6, pp. 1055-1068 
504 |a Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88 
504 |a Kreuß, M., Krause, I., Kulozik, U., Influence of glycosylation on foaming properties of bovine caseinomacropeptide (2009) International Dairy Journal, 19 (12), pp. 715-720 
504 |a Kreuß, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23 (7), pp. 1818-1826 
504 |a Lieske, B., Konrad, G., Kleinschmidt, T.H., Isolation of caseinomacropeptide from rennet whey by a multi-stage ultrafiltration process. II. Influence of pH and heating on the carbohydrate moiety of glycomacropeptide (2004) Milchwissenschaft, 59, pp. 291-294 
504 |a Martin Diana, A.B., Fraga, M.J., Fontecha, J., Isolation and characterization of caseinmacropeptide from bovine, ovine, and caprine cheese whey (2002) European Food Research and Technology, 214, pp. 282-286 
504 |a Martinez, M.J., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71, pp. 230-237 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of gelation of casein glycomacropeptide-β-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20, pp. 580-588 
504 |a Maubois, J.L., Laits et produits laitiers en alimentation humaine: apports des procédés technologiques (2008) Bulletin de I'Académie Nationale de Médecine, 192 (4), pp. 703-711 
504 |a Mikkelsen, T., FrØkiœr, C., Topp, C., Bonomi, F., Iametti, S., Picariello, G., Caseinomacropeptide self-association is dependent on whether the peptide is free or restricted in κ-casein (2005) Journal of Dairy Science, 88, pp. 4228-4238 
504 |a Mollé, D., Leonil, J., Quantitative determination of bovine κ-casein macropeptide in dairy products by liquid chromatography/electrospray coupled to mass spectrometry (LC-ESI/MS) and liquid chromatography/electrospray coupled to tandem mass spectrometry (LS-ESI/MS/MS) (2005) International Dairy Journal, 15, pp. 419-428 
504 |a Moreno, F.J., López Fandiño, R., Olano, A., Characterization and functional properties of lactosyl caseinomacropeptide conjugates (2002) Journal of Agricultural and Food Chemistry, 50, pp. 5179-5184 
504 |a Relkin, P., Meylheuc, T., Launay, B., Raynal, K., Heat-induced gelation of globular protein mixtures. A DSC and scanning electron microscopic study (1998) Journal of Thermal Analysis, 51, pp. 747-755 
504 |a Thöma Worringer, C., Siegert, N., Kulozik, U., Foaming properties of caseinomacropeptide - 2. Impact on pH and ionic strength (2007) Milchwissenschaft, 62 (3), pp. 253-255 
504 |a Thomä-Worringer, C., Sørensen, J., López Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16, pp. 1324-1333 
504 |a Tolkach, A., Kulozik, U., Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques (2005) Journal of Food Engineering, 67, pp. 13-20 
504 |a Wang, Q., (2007), Application of low-intensity ultrasound to characterise the microstructure of model food systems. Vol. PhD thesis, Technischen Universität München, Germany 
520 3 |a Casein glycomacropeptide (CMP) found in cheese whey is a C-terminal hydrophilic glycopeptide released from κ-casein by the action of chymosin during cheese making. In a previous work a self-assembly model for CMP at room temperature was proposed, involving a first step of hydrophobic assembly followed by a second step of electrostatic interactions which occurs below pH 4.5. The objective of the present work was to study, by dynamic light scattering (DLS), the effect of heating (35-85 °C) on the pH-driven CMP self-assembly and its impact on the dynamics of CMP gelation. The concentration of CMP was 3%. w/w for DLS and 12%. w/w for rheological measurements. The solutions at pH 4.5 and 6.5 did not show any change in the particle size distributions upon heating. In contrast the solutions at pH lower than 4.5 that showed electrostatic self-assembly at room temperature were affected by heating. The mean diameter of assembled CMP increased by decreasing pH. For all solutions with pH lower than 4.5, the particle size did not change on cooling, suggesting that the assembled CMP forms formed during heating were stable. The gel point determined as G'-G″ crossover, occurred in all systems at 70 °C, but at different times. The rate of self-assembly determined by DLS as well as the rate of gelation increased with increasing temperature and decreasing pH from 4 to 2. Increasing temperature and decreasing pH, the first step of CMP self-assembly by hydrophobic interactions is speed out. All the self-assembled structures and the gels formed at different temperatures were pH-reversible but did not revert to the initial size (monomer) but to associated forms that correspond mainly to CMP dimers. © 2010 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Universidad Nacional de Luján 
536 |a Detalles de la financiación: This research was supported by Universidad de Buenos Aires , Universidad Nacional de Luján , Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina . 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Tecnología, Universidad Nacional de Luján, Ruta 5 y 7, Luján, 6700 Buenos Aires, Argentina 
690 1 0 |a CASEIN GLYCOMACROPEPTIDE 
690 1 0 |a HEAT GELATION 
690 1 0 |a HEAT-INDUCED SELF-ASSEMBLY 
650 1 7 |2 spines  |a PH 
700 1 |a Farías, M.E. 
700 1 |a Pilosof, A.M.R. 
773 0 |d 2011  |g v. 25  |h pp. 860-867  |k n. 5  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952538103&doi=10.1016%2fj.foodhyd.2010.08.005&partnerID=40&md5=54d23d063288f0920d05dc8fb650d4d0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2010.08.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v25_n5_p860_Martinez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v25_n5_p860_Martinez  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v25_n5_p860_Martinez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 71440