Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: Kinetics and mechanisms of oxidation and overoxidation

Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 10 3 tim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Reyes, A.M
Otros Autores: Hugo, M., Trostchansky, A., Capece, L., Radi, R., Trujillo, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18914caa a22014897a 4500
001 PAPER-10444
003 AR-BaUEN
005 20230518204029.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79959341904 
024 7 |2 cas  |a alcohol, 64-17-5; arachidonic acid, 506-32-1, 6610-25-9, 7771-44-0; peroxiredoxin, 207137-51-7; Peroxiredoxins, 1.11.1.15 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FRBME 
100 1 |a Reyes, A.M. 
245 1 0 |a Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: Kinetics and mechanisms of oxidation and overoxidation 
260 |c 2011 
270 1 0 |m Trujillo, M.; Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay; email: madiat@fmed.edu.uy 
506 |2 openaire  |e Política editorial 
504 |a Andersen, P., Vaccine strategies against latent tuberculosis infection (2007) Trends in Microbiology, 15 (1), pp. 7-13. , DOI 10.1016/j.tim.2006.11.008, PII S0966842X06002733 
504 |a Brandt, L., Cunha, J.F., Olsen, A.W., Chilima, B., Hirsch, P., Appelberg, R., Andersen, P., Failure of the Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis (2002) Infection and Immunity, 70 (2), pp. 672-678. , DOI 10.1128/IAI.70.2.672-678.2002 
504 |a Harries, A.D., Zachariah, R., Corbett, E.L., Lawn, S.D., Santos-Filho, E.T., Chimzizi, R., Harrington, M., De Cock, K.M., The HIV-associated tuberculosis epidemic-when will we act? (2010) Lancet, 375, pp. 1906-1919 
504 |a Kaye, K., Frieden, T.R., Tuberculosis control: The relevance of classic principles in an era of acquired immunodeficiency syndrome and multidrug resistance (1996) Epidemiologic Reviews, 18 (1), pp. 52-63 
504 |a Meena, L.S., Rajni, Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv (2010) FEBS J., 277, pp. 2416-2427 
504 |a Yoshida, A., Inagawa, H., Kohchi, C., Nishizawa, T., Soma, G., The role of toll-like receptor 2 in survival strategies of Mycobacterium tuberculosis in macrophage phagosomes (2009) Anticancer Res., 29, pp. 907-910 
504 |a Rajavelu, P., Das, S.D., A correlation between phagocytosis and apoptosis in THP-1 cells infected with prevalent strains of Mycobacterium tuberculosis (2007) Microbiology and Immunology, 51 (2), pp. 201-210. , http://www.jstage.jst.go.jp/article/mandi/51/2/201/_pdf 
504 |a Fang, F.C., Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies (2004) Nature Reviews Microbiology, 2 (10), pp. 820-832. , DOI 10.1038/nrmicro1004 
504 |a Nathan, C., Shiloh, M.U., Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (16), pp. 8841-8848. , DOI 10.1073/pnas.97.16.8841 
504 |a Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: Consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J. Biol. Chem., 286, pp. 6627-6640 
504 |a Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide (1991) Arch. Biochem. Biophys., 288, pp. 481-487 
504 |a Porter, N.A., Caldwell, S.E., Mills, K.A., Mechanisms of free radical oxidation of unsaturated lipids (1995) Lipids, 30, pp. 277-290 
504 |a Lewis, J.G., Hamilton, T., Adams, D.O., The effect of macrophage development on the release of reactive oxygen intermediates and lipid oxidation products, and their ability to induce oxidative DNA damage in mammalian cells (1986) Carcinogenesis, 7 (5), pp. 813-818 
504 |a Bonney, R.J., Opas, E.E., Humes, J.L., Lipoxygenase pathways of macrophages (1985) Federation Proceedings, 44 (14), pp. 2933-2936 
504 |a Sevanian, A., Wratten, M.L., McLeod, L.L., Kim, E., Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: A structural basis for enzyme activation (1988) Biochim. Biophys. Acta, 961, pp. 316-327 
504 |a Evans, M.V., Turton, H.E., Grant, C.M., Dawes, I.W., Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: Involvement of a respiration-related process for maximal sensitivity and adaptive response (1998) Journal of Bacteriology, 180 (3), pp. 483-490 
504 |a Wang, G., Hong, Y., Johnson, M.K., Maier, R.J., Lipid peroxidation as a source of oxidative damage in Helicobacter pylori: Protective roles of peroxiredoxins (2006) Biochimica et Biophysica Acta - General Subjects, 1760 (11), pp. 1596-1603. , DOI 10.1016/j.bbagen.2006.05.005, PII S0304416506001383 
504 |a Jaeger, T., Budde, H., Flohe, L., Menge, U., Singh, M., Trujillo, M., Radi, R., Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis (2004) Archives of Biochemistry and Biophysics, 423 (1), pp. 182-191. , DOI 10.1016/j.abb.2003.11.021 
504 |a Hu, Y., Coates, A.R., Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TpX (2009) PLoS One, 4, p. 5150 
504 |a Master, S.S., Springer, B., Sander, P., Boettger, E.C., Deretic, V., Timmins, G.S., Oxidative stress response genes in Mycobacterium tuberculosis: Role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages (2002) Microbiology, 148 (10), pp. 3139-3144 
504 |a Manca, C., Paul, S., Barry III, C.E., Freedman, V.H., Kaplan, G., Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro (1999) Infection and Immunity, 67 (1), pp. 74-79 
504 |a Zhang, Y., Heym, B., Allen, B., Young, D., Cole, S., The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis (1992) Nature, 358, pp. 591-593 
504 |a Sherman, D.R., Mdluli, K., Hickey, M.J., Arain, T.M., Morris, S.L., Barry III, C.E., Stover, C.K., Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis (1996) Science, 272 (5268), pp. 1641-1643 
504 |a Jaeger, T., Peroxiredoxin systems in mycobacteria (2007) Subcell. Biochem., 44, pp. 207-217 
504 |a Gu, S., Chen, J., Dobos, K.M., Bradbury, E.M., Belisle, J.T., Chen, X., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain (2003) Mol. Cell. Proteomics, 2, pp. 1284-1296 
504 |a Oliva, M., Theiler, G., Zamocky, M., Koua, D., Margis-Pinheiro, M., Passardi, F., Dunand, C., PeroxiBase: A powerful tool to collect and analyse peroxidase sequences from Viridiplantae (2009) J. Exp. Bot., 60, pp. 453-459 
504 |a Soito, L., Williamson, C., Knutson, S.T., Fetrow, J.S., Poole, L.B., Nelson, K.J., PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family (2010) Nucleic Acids Res., 39, pp. 332-D337 
504 |a Murphy, D.J., Brown, J.R., Identification of gene targets against dormant phase Mycobacterium tuberculosis infections (2007) BMC Infect. Dis., 7, p. 84 
504 |a Li, S., Peterson, N.A., Kim, M.-Y., Kim, C.-Y., Hung, L.-W., Yu, M., Lekin, T., Baker, E.N., Crystal structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin (2005) Journal of Molecular Biology, 346 (4), pp. 1035-1046. , DOI 10.1016/j.jmb.2004.12.046 
504 |a Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Alvarez, B., Trujillo, M., Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: Kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426 
504 |a Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.-P., Knoops, B., Radi, R., Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation (2007) Archives of Biochemistry and Biophysics, 467 (1), pp. 95-106. , DOI 10.1016/j.abb.2007.08.008, PII S000398610700402X 
504 |a Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 (2009) Arch. Biochem. Biophys., 484, pp. 146-154 
504 |a Ogusucu, R., Rettori, D., Munhoz, D.C., Soares Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics (2007) Free Radical Biology and Medicine, 42 (3), pp. 326-334. , DOI 10.1016/j.freeradbiomed.2006.10.042, PII S0891584906006733 
504 |a Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (24), pp. 8209-8214. , http://www.pnas.org/cgi/reprint/105/24/8209, DOI 10.1073/pnas.0708308105 
504 |a Trindade, D.F., Cerchiaro, G., Augusto, O., A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair (2006) Chemical Research in Toxicology, 19 (11), pp. 1475-1482. , DOI 10.1021/tx060146x 
504 |a Maskrey, B.H., Bermudez-Fajardo, A., Morgan, A.H., Stewart-Jones, E., Dioszeghy, V., Taylor, G.W., Baker, P.R.S., O'Donnell, V.B., Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase (2007) Journal of Biological Chemistry, 282 (28), pp. 20151-20163. , http://www.jbc.org/cgi/reprint/282/28/20151, DOI 10.1074/jbc.M611776200 
504 |a Pryor, W.A., Castle, L., Chemical methods for the detection of lipid hydroperoxides (1984) Methods in Enzymology, 105, pp. 293-299 
504 |a Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77 
504 |a Trujillo, M., Radi, R., Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: New insights into the reaction of peroxynitrite with thiols (2002) Archives of Biochemistry and Biophysics, 397 (1), pp. 91-98. , DOI 10.1006/abbi.2001.2619 
504 |a Jiang, Z.Y., Hunt, J.V., Wolff, S.P., Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein (1992) Anal. Biochem., 202, pp. 384-389 
504 |a Jiang, Z.Y., Woollard, A.C., Wolff, S.P., Lipid hydroperoxide measurement by oxidation of Fe 2+ in the presence of xylenol orange: Comparison with the TBA assay and an iodometric method (1991) Lipids, 26, pp. 853-856 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) Journal of Molecular Graphics, 14 (1), pp. 33-38. , DOI 10.1016/0263-7855(96)00018-5 
504 |a Richardson, W.H., Hodge, V.F., Acidities of tertiary alkyl hydroperoxides (1970) J. Org. Chem., 35, pp. 4012-4016 
504 |a Richardson, D.E., Yao, H., Frank, K.M., Bennett, D.A., Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate (2000) Journal of the American Chemical Society, 122 (8), pp. 1729-1739. , DOI 10.1021/ja9927467 
504 |a Davies, D.M., Jones, P., Mantle, D., The kinetics of formation of horseradish peroxidase compound i by reaction with peroxobenzoic acids: PH and peroxo acid substituent effects (1976) Biochem. J., 157, pp. 247-253 
504 |a Winterbourn, C.C., Metodiewa, D., Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide (1999) Free Radical Biology and Medicine, 27 (3-4), pp. 322-328. , DOI 10.1016/S0891-5849(99)00051-9, PII S0891584999000519 
504 |a Hall, A., Parsonage, D., Poole, L.B., Karplus, P.A., Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization (2010) J. Mol. Biol., 402, pp. 194-209 
504 |a Perrin, D., Ionisation constants of inorganic acids and bases in aqueous solution (1984) IUPAC Chemical Data Series, , Pergamon Press Oxford 
504 |a Ali, S.T., Karamat, S., Kona, J., Fabian, W.M., Theoretical prediction of pK(a) values of seleninic, selenenic, sulfinic, and carboxylic acids by quantum-chemical methods (2010) J. Phys. Chem. A, 114, pp. 12470-12478 
504 |a Ursini, F., Maiorino, M., Gregolin, C., The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (1985) Biochimica et Biophysica Acta - General Subjects, 839 (1), pp. 62-70. , DOI 10.1016/0304-4165(85)90182-5 
504 |a Soonsanga, S., Lee, J.-W., Helmann, J.D., Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR (2008) Molecular Microbiology, 68 (4), pp. 978-986. , DOI 10.1111/j.1365-2958.2008.06200.x 
504 |a Declercq, J.-P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., Knoops, B., Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution (2001) Journal of Molecular Biology, 311 (4), pp. 751-759. , DOI 10.1006/jmbi.2001.4853 
504 |a Piñeyro, M.D., Arcari, T., Robello, C., Radi, R., Trujillo, M., Tryparedoxin peroxidases from Trypanosoma cruzi: High efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite (2011) Arch. Biochem. Biophys., 507, pp. 287-295 
504 |a Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215 
504 |a Akaki, T., Tomioka, H., Shimizu, T., Dekio, S., Sato, K., Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis (2000) Clinical and Experimental Immunology, 121 (2), pp. 302-310. , DOI 10.1046/j.1365-2249.2000.01298.x 
520 3 |a Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 10 3 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pK a reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 10 8 and 10 5 M - 1 s - 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pK a. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity. © 2011 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Investigación e Innovación, FCE_516 
536 |a Detalles de la financiación: The authors thank ANII for financial support (FCE_516) to A.T. A.R. and M.H. were partially supported by fellowships from ANII. We also thank Marcelo Martí and Darío Estrín (Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina) for helpful discussion. R.R. is a Howard Hughes Medical Institute Research Scholar. Appendix A 
593 |a Departamento de Bioquímica, Universidad de la República, 11800 Montevideo, Uruguay 
593 |a Center for Free Radical and Biomedical Research, Universidad de la República, 11800 Montevideo, Uruguay 
593 |a Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay 
690 1 0 |a ALKYL HYDROPEROXIDE REDUCTASE E 
690 1 0 |a ARACHIDONIC ACID 
690 1 0 |a FREE RADICALS 
690 1 0 |a HYDROPEROXIDE 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a PEROXIDASE 
690 1 0 |a PEROXIREDOXIN 
690 1 0 |a ALCOHOL 
690 1 0 |a ALKYL HYDROPEROXIDE REDUCTASE E 
690 1 0 |a ARACHIDONIC ACID 
690 1 0 |a HYDROPEROXIDE 
690 1 0 |a PEROXIREDOXIN 
690 1 0 |a SULFENIC ACID DERIVATIVE 
690 1 0 |a THIOL 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ARTICLE 
690 1 0 |a ENZYME INACTIVATION 
690 1 0 |a ENZYME SPECIFICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a KINETICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTON TRANSPORT 
690 1 0 |a STOICHIOMETRY 
690 1 0 |a CHROMATOGRAPHY, LIQUID 
690 1 0 |a KINETICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a PEROXIREDOXINS 
690 1 0 |a SUBSTRATE SPECIFICITY 
690 1 0 |a TANDEM MASS SPECTROMETRY 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
700 1 |a Hugo, M. 
700 1 |a Trostchansky, A. 
700 1 |a Capece, L. 
700 1 |a Radi, R. 
700 1 |a Trujillo, M. 
773 0 |d 2011  |g v. 51  |h pp. 464-473  |k n. 2  |p Free Radic. Biol. Med.  |x 08915849  |w (AR-BaUEN)CENRE-4784  |t Free Radical Biology and Medicine 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959341904&doi=10.1016%2fj.freeradbiomed.2011.04.023&partnerID=40&md5=001459fd658e727eb1dfe68f4c65d804  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.freeradbiomed.2011.04.023  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08915849_v51_n2_p464_Reyes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08915849_v51_n2_p464_Reyes  |y Registro en la Biblioteca Digital 
961 |a paper_08915849_v51_n2_p464_Reyes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71397