Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors

Dopamine (DA) D2 receptors expressed in DA neurons (D 2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitivel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bello, E.P
Otros Autores: Mateo, Y., Gelman, D.M, Noaín, D., Shin, J.H, Low, M.J, Alvarez, V.A, Lovinger, D.M, Rubinstein, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20216caa a22017177a 4500
001 PAPER-10387
003 AR-BaUEN
005 20230518204025.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79960836822 
024 7 |2 cas  |a cocaine, 50-36-2, 53-21-4, 5937-29-1; 3-hydroxybenzylhydrazine, 637-33-2; Baclofen, 1134-47-0; Cocaine, 50-36-2; Dihydroxyphenylalanine, 63-84-3; Dopamine Agonists; Dopamine Antagonists; Dopamine Uptake Inhibitors; Enzyme Inhibitors; GABA-B Receptor Agonists; Hydrazines; Quinpirole, 85760-74-3; Receptors, Dopamine D2; Sulpiride, 15676-16-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NANEF 
100 1 |a Bello, E.P. 
245 1 0 |a Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors 
260 |c 2011 
270 1 0 |m Rubinstein, M.; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; email: mrubins@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Schultz, W., Dopamine signals for reward value and risk: Basic and recent data (2010) Behav. Brain Funct., 6, p. 24 
504 |a Goto, Y., Otani, S., Grace, A.A., The Yin and Yang of dopamine release: A new perspective (2007) Neuropharmacology, 53 (5), pp. 583-587. , DOI 10.1016/j.neuropharm.2007.07.007, PII S0028390807002171 
504 |a Volkow, N.D., Fowler, J.S., Wang, G.J., Baler, R., Telang, F., Imaging dopamine's role in drug abuse and addiction (2009) Neuropharmacology, 56 (SUPPL. 1), pp. 3-8 
504 |a Kenny, P.J., Reward mechanisms in obesity: New insights and future directions (2011) Neuron, 69, pp. 664-679 
504 |a Sulzer, D., How addictive drugs disrupt presynaptic dopamine neurotransmission (2011) Neuron, 69, pp. 628-649 
504 |a Morgan, D., Grant, K.A., Gage, H.D., Mach, R.H., Kaplan, J.R., Prioleau, O., Nader, S.H., Nader, M.A., Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration (2002) Nature Neuroscience, 5 (2), pp. 169-174. , DOI 10.1038/nn798 
504 |a Thanos, P.K., Volkow, N.D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D.K., Hitzemann, R., Overexpression of dopamine D2 receptors reduces alcohol self-administration (2001) Journal of Neurochemistry, 78 (5), pp. 1094-1103. , DOI 10.1046/j.1471-4159.2001.00492.x 
504 |a Volkow, N.D., Wang, G.-J., Fowler, J.S., Logan, J., Gatley, S.J., Gifford, A., Hitzemann, R., Pappas, N., Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels (1999) American Journal of Psychiatry, 156 (9), pp. 1440-1443 
504 |a Volkow, N.D., Brain da D2 receptors predict reinforcing effects of stimulants in humans: Replication study (2002) Synapse, 46, pp. 79-82 
504 |a Chausmer, A.L., Elmer, G.I., Rubinstein, M., Low, M.J., Grandy, D.K., Katz, J.L., Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice (2002) Psychopharmacology, 163 (1), pp. 54-61. , DOI 10.1007/s00213-002-1142-y 
504 |a Maldonado, R., Saiardi, A., Valverde, O., Samad, T.A., Roques, B.P., Borrelli, E., Absence of opiate, rewarding effects in mice lacking dopamine D2 receptors (1997) Nature, 388 (6642), pp. 586-589. , DOI 10.1038/41567 
504 |a Phillips, T.J., Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors (1998) Nat. Neurosci., 1, pp. 610-615 
504 |a Welter, M., Vallone, D., Samad, T.A., Meziane, H., Usiello, A., Borrelli, E., Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (16), pp. 6840-6845. , DOI 10.1073/pnas.0610790104 
504 |a Cunningham, C.L., Howard, M.A., Gill, S.J., Rubinstein, M., Low, M.J., Grandy, D.K., Ethanol-conditioned place preference is reduced in dopamine D2 receptor-deficient mice (2000) Pharmacology Biochemistry and Behavior, 67 (4), pp. 693-699. , DOI 10.1016/S0091-3057(00)00414-7, PII S0091305700004147 
504 |a Bunney, B.S., Aghajanian, G.K., Roth, R.H., Comparison of effects of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurones (1973) Nat. New Biol., 245, pp. 123-125 
504 |a Cubeddu, L.X., Hoffmann, I.S., Operational characteristics of the inhibitory feedback mechanism for regulation of dopamine release via presynaptic receptors (1982) Journal of Pharmacology and Experimental Therapeutics, 223 (2), pp. 497-501 
504 |a Ford, C.P., Gantz, S.C., Phillips, P.E., Williams, J.T., Control of extracellular dopamine at dendrite and axon terminals (2010) J. Neurosci., 30, pp. 6975-6983 
504 |a Paladini, C.A., Robinson, S., Morikawa, H., Williams, J.T., Palmiter, R.D., Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (5), pp. 2866-2871. , DOI 10.1073/pnas.0138018100 
504 |a Wolf, M.E., Roth, R.H., Autoreceptor regulation of dopamine synthesis (1990) Ann. NY Acad. Sci., 604, pp. 323-343 
504 |a Schmitz, Y., Benoit-Marand, M., Gonon, F., Sulzer, D., Presynaptic regulation of dopaminergic neurotransmission (2003) Journal of Neurochemistry, 87 (2), pp. 273-289. , DOI 10.1046/j.1471-4159.2003.02050.x 
504 |a Buckholtz, J.W., Dopaminergic network differences in human impulsivity (2010) Science, 329, p. 532 
504 |a Koeltzow, T.E., Xu, M., Cooper, D.C., Hu, X.-T., Tonegawa, S., Wolf, M.E., White, F.J., Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice (1998) Journal of Neuroscience, 18 (6), pp. 2231-2238 
504 |a Mercuri, N.B., Saiardi, A., Bonci, A., Picetti, R., Calabresi, P., Bernardi, G., Borrelli, E., Loss of auroreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice (1997) Neuroscience, 79 (2), pp. 323-327. , DOI 10.1016/S0306-4522(97)00135-8 
504 |a Diaz-Torga, G., Feierstein, C., Libertun, C., Gelman, D., Kelly, M.A., Low, M.J., Rubinstein, M., Becu-Villalobos, D., Disruption of the D2 dopamine receptor alters GH and IGF-I secretion and causes dwarfism in male mice (2002) Endocrinology, 143 (4), pp. 1270-1279. , DOI 10.1210/en.143.4.1270 
504 |a Backman, C.M., Malik, N., Zhang, Y., Shan, L., Grinberg, A., Hoffer, B.J., Westphal, H., Tomac, A.C., Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus (2006) Genesis, 44 (8), pp. 383-390. , DOI 10.1002/dvg.20228 
504 |a Kennedy, R.T., Jones, S.R., Wightman, R.M., Dynamic observation of dopamine autoreceptor effects in rat striatal slices (1992) J. Neurochem., 59, pp. 449-455 
504 |a Phillips, P.E.M., Hancock, P.J., Stamford, J.A., Time window of autoreceptor-mediated inhibition of limbic and striatal dopamine release (2002) Synapse, 44 (1), pp. 15-22. , DOI 10.1002/syn.10049 
504 |a Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C., Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity (1972) J. Pharm. Pharmacol., 24, pp. 744-747 
504 |a Avale, M.E., Falzone, T.L., Gelman, D.M., Low, M.J., Grandy, D.K., Rubinstein, M., The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder (2004) Molecular Psychiatry, 9 (7), pp. 718-726 
504 |a Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., Caron, M.G., Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter (1996) Nature, 379 (6566), pp. 606-612. , DOI 10.1038/379606a0 
504 |a Zhuang, X., Oosting, R.S., Jones, S.R., Gainetdinov, R.R., Miller, G.W., Caron, M.G., Hen, R., Hyperactivity and impaired response habituation in hyperdopaminergic mice (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (4), pp. 1982-1987. , DOI 10.1073/pnas.98.4.1982 
504 |a Dickinson, S.D., Sabeti, J., Larson, G.A., Giardina, K., Rubinstein, M., Kelly, M.A., Grandy, D.K., Zahniser, N.R., Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum (1999) Journal of Neurochemistry, 72 (1), pp. 148-156. , DOI 10.1046/j.1471-4159.1999.0720148.x 
504 |a Jones, S.R., Gainetdinov, R.R., Hu, X.-T., Cooper, D.C., Wightman, R.M., White, F.J., Caron, M.G., Loss of autoreceptor functions in mice lacking the dopamine transporter (1999) Nature Neuroscience, 2 (7), pp. 649-655. , DOI 10.1038/10204 
504 |a Berridge, K.C., The debate over dopamine's role in reward: The case for incentive salience (2007) Psychopharmacology, 191 (3), pp. 391-431. , DOI 10.1007/s00213-006-0578-x, Dopamine - Revisited 
504 |a Salamone, J.D., Correa, M., Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine (2002) Behavioural Brain Research, 137 (1-2), pp. 3-25. , DOI 10.1016/S0166-4328(02)00282-6, PII S0166432802002826 
504 |a Joseph, J.D., Wang, Y.-M., Miles, P.R., Budygin, E.A., Picetti, R., Gainetdinov, R.R., Caron, M.G., Wightman, R.M., Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D3 receptors (2002) Neuroscience, 112 (1), pp. 39-49. , DOI 10.1016/S0306-4522(02)00067-2, PII S0306452202000672 
504 |a Maina, F.K., Mathews, T.A., A functional fast scan cyclic voltammetry assay to characterize dopamine D2 and D3 autoreceptors in the mouse striatum (2010) ACS Chem. Neurosci., 1, pp. 450-462 
504 |a Benoit-Marand, M., Borrelli, E., Gonon, F., Inhibition of dopamine release via presynaptic D2 receptors: Time course and functional characteristics in vivo (2001) Journal of Neuroscience, 21 (23), pp. 9134-9141 
504 |a Schmitz, Y., Schmauss, C., Sulzer, D., Altered dopamine release and uptake kinetics in mice lacking D 2 receptors (2002) Journal of Neuroscience, 22 (18), pp. 8002-8009 
504 |a Baik, J.H., Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors (1995) Nature, 377, pp. 424-428 
504 |a Kelly, M.A., Rubinstein, M., Phillips, T.J., Lessov, C.N., Burkhart-Kasch, S., Zhang, G., Bunzow, J.R., Low, M.J., Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations (1998) Journal of Neuroscience, 18 (9), pp. 3470-3479 
504 |a Sano, H., Yasoshima, Y., Matsushita, N., Kaneko, T., Kohno, K., Pastan, I., Kobayashi, K., Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function (2003) Journal of Neuroscience, 23 (27), pp. 9078-9088 
504 |a Hidalgo-Sanchez, M., Martinez-De-La-Torre, M., Alvarado-Mallart, R.-M., Puelles, L., A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain (2005) Journal of Comparative Neurology, 483 (1), pp. 17-29. , DOI 10.1002/cne.20402 
504 |a Schaeren-Wiemers, N., Gerfin-Moser, A., A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: In situ hybridization using digoxigenin-labelled cRNA probes (1993) Histochemistry, 100 (6), pp. 431-440 
504 |a John, C.E., Budygin, E.A., Mateo, Y., Jones, S.R., Neurochemical characterization of the release and uptake of dopamine in ventral tegmental area and serotonin in substantia nigra of the mouse (2006) J. Neurochem., 96, pp. 267-282 
504 |a Pellizzari, E.H., Barontini, M., Figuerola Mde, L., Cigorraga, S.B., Levin, G., Possible autocrine enkephalin regulation of catecholamine release in human pheochromocytoma cells (2008) Life Sci., 83, pp. 413-420 
504 |a Falzone, T.L., Gelman, D.M., Young, J.I., Grandy, D.K., Low, M.J., Rubinstein, M., Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear (2002) European Journal of Neuroscience, 15 (1), pp. 158-164. , DOI 10.1046/j.0953-816x.2001.01842.x 
504 |a Bevins, R.A., Besheer, J., Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study'recognition memory' (2006) Nat. Protoc., 1, pp. 1306-1311 
504 |a Cunningham, C.L., Gremel, C.M., Groblewski, P.A., Drug-induced conditioned place preference and aversion in mice (2006) Nature Protocols, 1 (4), pp. 1662-1670. , DOI 10.1038/nprot.2006.279, PII NPROT.2006.279 
504 |a Nemirovsky, S.I., Avale, M.E., Brunner, D., Rubinstein, M., Reward-seeking and discrimination deficits displayed by hypodopaminergic mice are prevented in mice lacking dopamine D4 receptors (2009) Synapse, 63, pp. 991-997 
520 3 |a Dopamine (DA) D2 receptors expressed in DA neurons (D 2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D 2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2 loxP/loxP; Dat+/IREScre, referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D 2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine. © 2011 Nature America, Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Foundation for the National Institutes of Health, R01-MH61326 
536 |a Detalles de la financiación: National Science Foundation, INT-9901278 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: National Institute of Neurological Disorders and Stroke 
536 |a Detalles de la financiación: 1Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. 2Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA. 3Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA. 4Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA. 5Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. 6These authors contributed equally to this work. Correspondence should be addressed to M.R. (mrubins@dna.uba.ar). 
536 |a Detalles de la financiación: We thank J. Sztein, G. Levin, C. Bäckman, V. Rodríguez, R. Lorenzo, S. Nemirovsky, M. Peper, S. Merani, C. Carbone, F. Maschi and M. Baetscher for their scientific and technical assistance. This work was supported in part by an International Research Scholar Grant of the Howard Hughes Medical Institute (M.R.), Universidad de Buenos Aires (M.R.) and Agencia Nacional de Promoción Científica y Tecnológica (M.R.), National Science Foundation grant INT-9901278 (M.J.L. and M.R.) and US National Institutes of Health grant R01-MH61326 (M.J.L.). E.P.B., D.N. and D.M.G. received doctoral fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. Y.M., J.H.S., V.A.A. and D.M.L. were supported by the Division of Intramural Clinical and Biological Research of the National Institute on Alcohol Abuse and Alcoholism. J.H.S. and V.A.A. received support from the Intramural Program of the National Institute of Neurological Disorders and Stroke. 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States 
593 |a Section on Neuronal Structure, Laboratory for Integrative Neuroscience, US National Institutes of Health, Bethesda, MD, United States 
593 |a Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a COCAINE 
690 1 0 |a DOPAMINE 2 RECEPTOR 
690 1 0 |a DOPAMINE AUTORECEPTOR 
690 1 0 |a ARTICLE 
690 1 0 |a DOPAMINERGIC NERVE CELL 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a MOTIVATION 
690 1 0 |a MOTOR PERFORMANCE 
690 1 0 |a NERVE CELL INHIBITION 
690 1 0 |a NEUROTRANSMISSION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PSYCHOMOTOR ACTIVITY 
690 1 0 |a SUPERSENSITIVITY 
690 1 0 |a SYNAPSE 
690 1 0 |a ANALYSIS OF VARIANCE 
690 1 0 |a ANIMALS 
690 1 0 |a AUTORADIOGRAPHY 
690 1 0 |a BACLOFEN 
690 1 0 |a CHOICE BEHAVIOR 
690 1 0 |a COCAINE 
690 1 0 |a CONDITIONING, OPERANT 
690 1 0 |a DIHYDROXYPHENYLALANINE 
690 1 0 |a DOPAMINE 
690 1 0 |a DOPAMINE AGONISTS 
690 1 0 |a DOPAMINE ANTAGONISTS 
690 1 0 |a DOPAMINE UPTAKE INHIBITORS 
690 1 0 |a DRUG INTERACTIONS 
690 1 0 |a ENZYME INHIBITORS 
690 1 0 |a EXPLORATORY BEHAVIOR 
690 1 0 |a FOOD 
690 1 0 |a GABA-B RECEPTOR AGONISTS 
690 1 0 |a HYDRAZINES 
690 1 0 |a HYPERKINESIS 
690 1 0 |a MAZE LEARNING 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a MESENCEPHALON 
690 1 0 |a MICE 
690 1 0 |a MICE, KNOCKOUT 
690 1 0 |a MOTIVATION 
690 1 0 |a MOTOR ACTIVITY 
690 1 0 |a NEURONS 
690 1 0 |a QUINPIROLE 
690 1 0 |a RECEPTORS, DOPAMINE D2 
690 1 0 |a REINFORCEMENT SCHEDULE 
690 1 0 |a REWARD 
690 1 0 |a SULPIRIDE 
700 1 |a Mateo, Y. 
700 1 |a Gelman, D.M. 
700 1 |a Noaín, D. 
700 1 |a Shin, J.H. 
700 1 |a Low, M.J. 
700 1 |a Alvarez, V.A. 
700 1 |a Lovinger, D.M. 
700 1 |a Rubinstein, M. 
773 0 |d 2011  |g v. 14  |h pp. 1033-1038  |k n. 8  |p Nat. Neurosci.  |x 10976256  |w (AR-BaUEN)CENRE-2301  |t Nature Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960836822&doi=10.1038%2fnn.2862&partnerID=40&md5=5e8bc32ccae06beef9b80a6c951a2307  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/nn.2862  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10976256_v14_n8_p1033_Bello  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10976256_v14_n8_p1033_Bello  |y Registro en la Biblioteca Digital 
961 |a paper_10976256_v14_n8_p1033_Bello  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71340