Water relations and hydraulic architecture of two Patagonian steppe shrubs: Effect of slope orientation and microclimate

On a local scale, topography influences microclimate, vegetation structure and the morpho-physiological attributes of plants. We studied the effects of microclimatic differences between NE- and SW-facing slopes on the water relations and hydraulic properties of two dominant shrubs of the Patagonian...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Iogna, P.A
Otros Autores: Bucci, S.J, Scholz, F.G, Goldstein, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14942caa a22012737a 4500
001 PAPER-10323
003 AR-BaUEN
005 20230518204021.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79955559956 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JAEND 
100 1 |a Iogna, P.A. 
245 1 0 |a Water relations and hydraulic architecture of two Patagonian steppe shrubs: Effect of slope orientation and microclimate 
260 |c 2011 
270 1 0 |m Scholz, F.G.; Grupo de Estudios Biofisicos y Ecofisiologicos (GEBEF), Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina; email: fgscholz@unpata.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Austin, A., Sala, O., Carbon-nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina (2002) Journal of Vegetation Science, 13, pp. 351-360 
504 |a Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., Schaeffer, S.M., Water pulses and biogeochemical cycles in arid and semiarid ecosystems (2004) Oecologia, 141, pp. 221-235 
504 |a Barij, N., Stokes, A., Bogaard, T., Van Beek, R., Does growing on a slope affect tree xylem structure and water relations? (2007) Tree Physiology, 27, pp. 757-764 
504 |a Beeskow, A.M., Del Valle, H.F., Rostagno, C.M., (1987) Los sistemas fisiográficos de la región árida y semiárida de la provincia del Chubut, p. 173. , S. C de Bariloche SECYT Delegacion Regional Patagonica 
504 |a Brodribb, T.J., Holbrook, N.M., Stomatal closure during leaf dehydration, correlation with other leaf physiological traits (2003) Plant Physiology, 132, pp. 2166-2173 
504 |a Brodribb, T.J., Holbrook, N.M., Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms (2004) New Phytologist, 162, pp. 663-670 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant (2004) Tree Physiology, 24, pp. 891-899 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water in Neotropical savanna trees (2005) Trees, 19, pp. 296-304 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P.I., Villalobos-Vega, R., Miralles-Wilhelm, F., Nutrient availability constrains the hydraulic architecture and water relations of savanna trees (2006) Plant Cell and Environment, 29, pp. 2153-2167 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Hoffmann, W.A., Meinzer, F.C., Franco, A.C., Giambelluca, T., Miralles-Wilhelm, F., Controls and stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna (2008) Agricultural and Forest Meteorology, 148, pp. 839-849. , Elsevier 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Arce, M.E., Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species (2009) Oecologia, 160, pp. 631-641 
504 |a Cipriotti, P.A., Flombaum, P., Sala, O.E., Aguiar, M.R., Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with Patagonian species (2008) Journal of Arid Environment, 72, pp. 162-174 
504 |a Franks, P.J., Drake, P.L., Froend, R.H., Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance (2007) Plant Cell and Environment, 30, pp. 19-30 
504 |a Fravolini, A., Hultine, K.R., Brugnoli, E., Gazal, R., English, N.B., Williams, D.G., Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size (2005) Oecología, 144, pp. 618-627 
504 |a Geiger, R., (1965) The Climate Near the Ground, , Harvard University Press, Cambridge, Mass 
504 |a Hacke, U.G., Sperry, J.S., Ewers, B.E., Ellsworth, D.S., Schafer, K.V.R., Oren, R., Influence of soil porosity on water use in Pinus taeda (2000) Oecologia, 124, pp. 495-505 
504 |a Hacke, U.G., Stiller, V., Sperry, J.S., Pittermann, J., McCulloh, K.A., Cavitation fatigue. embolism and refilling cycles can weaken the cavitation resistance of xylem (2001) Plant Physiology, 125, pp. 779-786 
504 |a (2007) IPCC WGI Fourth Assessment Report. Climate Change 2007: the Physical Science Basis, , IPCC, Switzerland, Intergovernmental Panel on Climate Change (IPCC) 
504 |a Kramer, P.J., Boyer, J.S., (1995) Water Relations of Plants and Soils, pp. 1-495. , Academic Press, San Diego, USA 
504 |a Lauenroth, W.K., Sala, O.E., Coffin, D.P., Kirchner, T.B., The importance of soil water in the recruitment of Bouteloua gracilis in the shortgrass steppe (1994) Ecological Applications, 4, pp. 741-749 
504 |a Lo Gullo, M.A., Nardini, A., Trifilo, P., Salleo, S., Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees (2005) Tree Physiology, 25, pp. 505-512 
504 |a Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85 (8), pp. 2184-2199 
504 |a Meinzer, F.C., Rundel, P.W., Sharifi, M.R., Nilsen, E.T., Turgor and osmotic relation of the desert shrub Larrea tridentata (1986) Plant, Cell and Environment, 9, pp. 467-475 
504 |a Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell and Environment, 26, pp. 1147-1155 
504 |a Meinzer, F.C., Woodruff, D.R., Domec, J.-C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecología, 156, pp. 31-41 
504 |a Mishio, M., Kawakubo, N., Kachi, N., Intraspecific variation in leaf morphology and photosynthetic traits in Boninia grisea Planchon (Rutaceae) endemic to the Bonin Islands, Japan (2007) Plant Species Biology, 22, pp. 117-124 
504 |a Mitchell, P.J., Veneklaas, E.J., Lambers, H., Burgess, S.S.O., Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia (2008) Plant, Cell and Environment, 31, pp. 1791-1802 
504 |a Nardini, A., Salleo, S., Andri, S., Circadian regulation of leaf hydraulic conductance in sunflowers (Helianthus annus L. cv Margot) (2005) Plant, Cell and Environment, 28, pp. 750-759 
504 |a Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Annals of Botany, 72, pp. 173-179 
504 |a Niklas, K.J., Differences between Acer saccharum leaves from open and wind-protected sites (1996) Annals of Botany, 78, pp. 61-66 
504 |a Paruelo, J.M., Sala, O.E., Water losses in Patagonian steppe: a modeling approach (1995) Ecology, 76, pp. 510-520 
504 |a Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationship among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phytologist, 174, pp. 787-798 
504 |a Sack, L., Frole, K., Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees (2006) Ecology, 87, pp. 483-491 
504 |a Sack, L., Tyree, M.T., Leaf hydraulics and its implications in plant structure and function (2005) Vascular Transport in Plants, pp. 93-114. , Elsevier Academic Press, Oxford, N.M. Holbrook, M.A. Zwieniecki (Eds.) 
504 |a Sack, L., Tyree, M.T., Holbrook, M.N., Leaf hydraulic architecture correlated with regeneration and irradiance in tropical rainforest trees (2005) New Phytologist, 167, pp. 403-413 
504 |a Sack, L., Melcher, P.J., Zwieniecki, M.A., Holbrook, N.M., The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods (2002) Journal of Experimental Botany, 53, pp. 2177-2184 
504 |a Schwinning, S., Starr, B.I., Ehleringer, J.R., Summer and winter dry in ecol desert ecosystem (Colorado plateau) part I: effects on soil water and plant water uptake (2005) Journal of Arid Environment, 60, pp. 547-566 
504 |a Scholz, F.G., Bucci, S.G., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant Cell and Environment, 30, pp. 236-248 
504 |a Scholz, F.G., Bucci, S.G., Goldstein, G., Meinzer, F.C., Franco, A.C., Salazar, A., Plant- and stand-level variation in biophysical and physiological traits along tree density gradients in the Cerrado (2008) Brazilian Journal of Plant Physiology, 20, pp. 217-232 
504 |a Schulte, P.J., Hinckley, T.M., A comparison of pressure-volume curve data analysis techniques (1985) Journal of Experimental Botany, 36, pp. 1590-1602 
504 |a Smith, C.H., Ennos, A.R., The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. (2003) Journal of Experimental Botany, 54, pp. 845-849 
504 |a Soriano, A., Sala, O.E., Ecological strategies in a Patagonian arid steppe (1983) Vegetatio, 56, pp. 9-15 
504 |a Sperry, J.S., Stiller, V., Hacke, U.G., Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues (2003) Agronomy Journal, 95, pp. 1362-1370 
504 |a Stratton, L., Goldstein, G., Meinzer, F.C., Stem water storage and efficiency of water transport: their functional significance in a Hawaiian dry forest (2000) Plant Cell and Environment, 23, pp. 99-106 
504 |a Tardieu, F., Simonneau, T., Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours (1998) Journal of Experimental Botany, 49, pp. 419-432 
504 |a Telewski, F.W., Growth, wood density, and ethylen production in response to mechanical perturbation in Pinus taeda (1990) Canadian Journal of Forest Research, 20, pp. 1277-1282 
504 |a Tyree, M.T., Hammel, H.T., The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique (1972) Journal of Experimental Botany, 23, pp. 267-282 
504 |a Tyree, M.T., Cheung, Y.N.S., McGregor, M.E., Talbot, A.J.B., The characteristic of seasonal and ontogenic changes in the tissue-water relations of Acer, Populus, Tsuga and Picea (1978) Canadian Journal of Botany, 56, pp. 635-647 
504 |a Tyree, M.T., Sperry, J.S., Vulnerability of xylem to cavitation and embolism (1989) Annual Review of Plant Physiology and Molecular Biology, 40, pp. 19-48 
520 3 |a On a local scale, topography influences microclimate, vegetation structure and the morpho-physiological attributes of plants. We studied the effects of microclimatic differences between NE- and SW-facing slopes on the water relations and hydraulic properties of two dominant shrubs of the Patagonian steppe in Argentina (Retanilla patagonica and Colliguaja integerrima). The NE-facing slope had higher irradiance and air saturation deficits and lower soil water availability and wind speed than the SW-facing slope. Predawn and midday ΨL and osmotic potentials were significantly lower in shrubs on the NE-facing slope. Osmotic adjustment and more elastic cell walls helped the plants to cope with a more xeric environment on NE-facing slope. Higher water deficits on NE-facing slope were partially compensated by a higher leaf and stem water storage. While stem hydraulic efficiency did not vary between slopes, leaf hydraulic conductance was between 40% and 300% higher on the NE-facing slope. Changes observed in leaf size and in SLA were consistent with responses to mechanical forces of wind (smaller and scleromorphic leaves on SW-facing slope). Morpho-physiological adjustments observed at a short spatial scale allow maintenance of midday ΨL above the turgor loss point and demonstrate that leaves are more responsive to microclimatic selective pressures than stems. © 2011.  |l eng 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 
593 |a Grupo de Estudios Biofisicos y Ecofisiologicos (GEBEF), Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina 
593 |a Laboratorio de Ecología Funcional, Departamento de Ecología, Genética y Evolución FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Biology, University of Miami, P.O Box 249118, Coral Gables, FL, United States 
690 1 0 |a COLLIGUAJA INTEGERRIMA 
690 1 0 |a IRRADIANCE 
690 1 0 |a LEAF WATER POTENTIAL 
690 1 0 |a RETANILLA PATAGONICA 
690 1 0 |a WATER TRANSPORT EFFICIENCY 
690 1 0 |a WIND 
690 1 0 |a WOOD DENSITY 
690 1 0 |a ADAPTATION 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a IRRADIANCE 
690 1 0 |a LEAF 
690 1 0 |a MICROCLIMATE 
690 1 0 |a MORPHOLOGY 
690 1 0 |a PHYSIOLOGICAL RESPONSE 
690 1 0 |a PLANT WATER RELATIONS 
690 1 0 |a SHRUB 
690 1 0 |a SLOPE 
690 1 0 |a SOIL WATER 
690 1 0 |a SPATIAL ANALYSIS 
690 1 0 |a STEPPE 
690 1 0 |a TOPOGRAPHIC EFFECT 
690 1 0 |a VEGETATION STRUCTURE 
690 1 0 |a WIND FORCING 
690 1 0 |a PATAGONIA 
690 1 0 |a COLLIGUAJA INTEGERRIMA 
690 1 0 |a RETANILLA PATAGONICA 
650 1 7 |2 spines  |a OSMOSIS 
700 1 |a Bucci, S.J. 
700 1 |a Scholz, F.G. 
700 1 |a Goldstein, G. 
773 0 |d 2011  |g v. 75  |h pp. 763-772  |k n. 9  |p J. Arid Environ.  |x 01401963  |w (AR-BaUEN)CENRE-5427  |t Journal of Arid Environments 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955559956&doi=10.1016%2fj.jaridenv.2011.04.001&partnerID=40&md5=0b0565b00204d2ce79eec7bbb39aea62  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jaridenv.2011.04.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01401963_v75_n9_p763_Iogna  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01401963_v75_n9_p763_Iogna  |y Registro en la Biblioteca Digital 
961 |a paper_01401963_v75_n9_p763_Iogna  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71276