Genetic variation in heat-stress tolerance among South American Drosophila populations

Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fallis, L.C
Otros Autores: Fanara, J.J, Morgan, T.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12715caa a22011657a 4500
001 PAPER-10259
003 AR-BaUEN
005 20230518204017.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84858004918 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a GENEA 
100 1 |a Fallis, L.C. 
245 1 0 |a Genetic variation in heat-stress tolerance among South American Drosophila populations 
260 |c 2011 
270 1 0 |m Morgan, T. J.; The Division of Biology, The Ecological Genomics Institute, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, United States; email: tjmorgan@ksu.edu 
506 |2 openaire  |e Política editorial 
504 |a Anderson, A., Collinge, J., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster (2003) Heredity, 90, pp. 195-202 
504 |a Ayrinhac, A., Debat, V., Gibert, P., Kister, A., Legout, H., Moreteau, B., Vergillino, R., David, J., Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability (2004) Funct Ecol, 18, pp. 700-706 
504 |a Azevedo, R.B.R., French, V., Partridge, L., Thermal evolution of egg size in Drosophila melanogaster (1996) Evolution, 50, pp. 2338-2345 
504 |a Bubliy, O.A., Riihimaa, A., Norry, F.M., Loeschcke, V., Variation in resistance and acclimation to low temperature stress among three geographical strains of Drosophila melanogaster (2002) J Therm Biol, 27, pp. 237-344 
504 |a Clarke, A., Climate change and animal distributions (1996) Animals and Temperature: Phenotypic and Evolutionary Adaptation, pp. 377-407. , I. A. Johnston and A. F. Bennett (Eds.), Cambridge: Cambridge University Press 
504 |a Cossins, A.R., Bowler, K., (1987) Temperature Biology of Animals, , New York: Chapman & Hall 
504 |a David, J.R., Capy, P., Genetic variation of Drosophila melanogaster natural populations (1988) Trends Genet, 4, pp. 106-111 
504 |a David, J.R., Gibert, P., Moreteau, B., Gilchrist, G.W., Huey, R.B., The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura (2003) Funct Ecol, 17, pp. 425-430 
504 |a David, J.R., Gibert, P., Legout, H., Petavy, G., Capy, P., Moreteau, B., Isofemale lines in Drosophila: an empirical approach to quantitative trait analysis in natural populations (2005) Heredity, 94, pp. 3-12 
504 |a Davidson, J.K., Nonparallel geographic patterns for tolerance to cold and desiccation in Drosophila melanogaster and Drosophila simulans (1990) Aust J Zool, 38, pp. 155-161 
504 |a Folguera, G., Cebalos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila (2008) Biol J Linn Soc, 95, pp. 233-245 
504 |a Gibert, P., Huey, R.B., Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny (2001) Physiol Biochem Zool, 74, pp. 429-434 
504 |a Gibert, P., Moreteau, B., Petavy, G., Karan, D., David, J.R., Chill-coma tolerance, a major climatic adaptation among Drosophila species (2001) Evolution, 55, pp. 1063-1068 
504 |a Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29 
504 |a Gilchrist, A.S., Partridge, L., A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster (1999) Genetics, 153, pp. 1775-1787 
504 |a Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics of Environmental Stress, , Oxford: Oxford University Press 
504 |a Hoffmann, A.A., Watson, M., Geographical variation in the acclimation responses of Drosophila to temperature extremes (1993) Am Nat, 142, pp. 93-113 
504 |a Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nat Rev Genet, 9, pp. 421-432 
504 |a Hoffmann, A.A., Anderson, A.R., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecol Lett, 5, pp. 614-618 
504 |a Hoffmann, A.A., Sorensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) J Therm Biol, 28, pp. 175-216 
504 |a Hoffmann, A.A., Hallas, R.J., Dean, J.A., Schiffer, M., Low potential for climatic stress adaptation in rainforest Drosophila species (2003) Science, 301, pp. 100-102 
504 |a Hoffmann, A.A., Shirriffs, J., Scott, M., Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia (2005) Funct Ecol, 19, pp. 222-227 
504 |a Climate change 2007: Physical science basis (2007) Summary for policy makers approved at the 10th session of Working Group I at the IPCC, , IPCC Report IPCC, Paris, Feb 2007 
504 |a Jenkins, N.L., Hoffmann, A.A., Genetic and maternal variation for heat resistance in Drosophila from the field (1994) Genetics, 137, pp. 783-789 
504 |a Jentsch, A., Kreyling, J., Beierkuhnlein, C., A new generation of climate-change experiments: events, not trends (2007) Front Ecol Environ, 5, pp. 365-374 
504 |a Karan, D., David, J.R., Cold tolerance in Drosophila: adaptive variations revealed by the analysis of starvation survival reaction norms (2000) J Therm Biol, 25, pp. 345-351 
504 |a Lavagnino, J., Anholt, R.R.H., Fanara, J.J., Variation in genetic architecture of olfactory behavior among wild-derived populations of Drosophila melanogaster (2008) J Evol Biol, 21, pp. 988-996 
504 |a Leather, S., Walter, K., Bale, J., (1993) The Ecology of Insects Overwintering, , Cambridge: Cambridge University Press 
504 |a Loeschcke, V., Krebs, R.A., Selection for heat-shock resistance in larval and in adult Drosophila buzzattii: comparing direct and indirect responses (1996) Evolution, 50, pp. 2354-2359 
504 |a Loeschcke, V., Krebs, R.A., Dahlgaard, J., Michalak, P., High-temperature stress and the evolution of thermal resistance in Drosophila (1997) Exs, 83, pp. 175-190 
504 |a Mitchell, K.A., Hoffmann, A.A., Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila (2010) Funct Ecol, 24, pp. 694-700 
504 |a Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242 
504 |a Parsons, P.A., Resistance to cold temperature stress in populations of Drosophila melanogaster and Drosophila simulans (1977) Aust J Zool, 25, pp. 693-698 
504 |a Potvin, C., Tousignant, D., Evolutionary consequences of stimulated global change: genetic adaptation or adaptive phenotypic plasticity (1996) Oecologia, 108, pp. 683-693 
504 |a Rako, L., Blacket, M.J., McKechnie, W., Hoffmann, A.A., Candidate genes and thermal phenotypes: identifying ecological important genetic variation for thermotolerance in the Australia Drosophila melanogaster cline (2007) Mol Ecol, 16, pp. 2948-2957 
504 |a Rashkovetsky, E., Iliadi, K., Michalak, P., Lupu, A., Nevo, E., Feder, M.E., Korol, A., Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient (2006) Heredity, 96, pp. 353-359 
504 |a Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Mol Ecol, 16, pp. 3973-3992 
504 |a Rohmer, C., David, J.R., Moreteau, B., Joly, D., Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome (2004) J Exp Biol, 207, pp. 2735-2742 
504 |a (2009) SAS/STAT 9.2 User's Guide, , SAS Institute2nd edn., Cary: SAS Institute 
504 |a Stanley, S.M., Parsons, P.A., The response of the cosmopolitan species, Drosophila melanogaster, to ecological gradients (1981) Proc Ecol Soc Aust, 11, pp. 121-130 
504 |a Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A., A rapid shift in a classic clinal pattern in Drosophila reflecting climate change (2005) Science, 308, pp. 691-693 
504 |a Zhen, Y., Ungerer, M.C., Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana (2008) New Phytol, 177, pp. 419-427 
520 3 |a Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature. © 2012 Springer Science+Business Media B.V.  |l eng 
536 |a Detalles de la financiación: NSF GK-12 
536 |a Detalles de la financiación: Lynne Cohen Foundation for Ovarian Cancer Research 
536 |a Detalles de la financiación: IOS-1051770 
536 |a Detalles de la financiación: Acknowledgments We thank S. Menon for assistance with flies used in this study. This paper was greatly improved by the helpful comments of R.A. Krebs, R.C. Woodruff, and two anonymous reviews. This work was supported by grants from the US National Science Foundation (IOS-1051770), the KSU Ecological Genomics Institute, the KSU Arthropod Genomics Center to TJM and fellowships (NSF GK-12 and GAANN) to LCF. 
593 |a The Division of Biology, The Ecological Genomics Institute, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, United States 
593 |a Departamento de Ecología, Genética y Evolución, FCEN UBAI, Buenos Aires, Argentina 
690 1 0 |a HEAT SURVIVAL 
690 1 0 |a TEMPERATURE STRESS RESISTANCE 
690 1 0 |a THERMOTOLERANCE 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a ENVIRONMENT 
690 1 0 |a FEMALE 
690 1 0 |a GENETIC VARIABILITY 
690 1 0 |a GENETICS 
690 1 0 |a HEAT SHOCK RESPONSE 
690 1 0 |a PHENOTYPE 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a ANIMALS 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a ENVIRONMENT 
690 1 0 |a FEMALE 
690 1 0 |a GENETIC VARIATION 
690 1 0 |a HEAT-SHOCK RESPONSE 
690 1 0 |a PHENOTYPE 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a HEXAPODA 
651 4 |a SOUTH AMERICA 
651 4 |a SOUTH AMERICA 
700 1 |a Fanara, J.J. 
700 1 |a Morgan, T.J. 
773 0 |d 2011  |g v. 139  |h pp. 1331-1337  |k n. 10  |p Genetica  |x 00166707  |w (AR-BaUEN)CENRE-216  |t Genetica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858004918&doi=10.1007%2fs10709-012-9635-z&partnerID=40&md5=1abddd0be21d69721c7ac560ff131883  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10709-012-9635-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00166707_v139_n10_p1331_Fallis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00166707_v139_n10_p1331_Fallis  |y Registro en la Biblioteca Digital 
961 |a paper_00166707_v139_n10_p1331_Fallis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI