Structures and stability of lipid emulsions formulated with sodium caseinate

The physicochemical properties of emulsions play an important role in food systems as they directly contribute to texture, sensory and nutritional properties of foods. Sodium caseinate (NaCas) is a well-used ingredient because of its good solubility and emulsifying properties and its stability durin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Huck-Iriart, C.
Otros Autores: Álvarez-Cerimedo, M.S, Candal, R.J, Herrera, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2011
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16547caa a22015737a 4500
001 PAPER-10243
003 AR-BaUEN
005 20230607131856.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80052864435 
024 7 |2 cas  |a alcohol, 64-17-5; calcium ion, 14127-61-8; casein, 9000-71-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a COCSF 
100 1 |a Huck-Iriart, C. 
245 1 0 |a Structures and stability of lipid emulsions formulated with sodium caseinate 
260 |b Elsevier Ltd  |c 2011 
270 1 0 |m Herrera, M.L.; Pabellón de Industrias, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: lidia@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a McClements, D.J., Emulsion stability (2005) Food emulsions, principles, practices, and techniques, pp. 269-339. , CRC Press, New York, USA 
504 |a Fox, P.F., Brodkorb, A., The casein micelle: historical aspects, current concepts and significance (2008) Int Dairy J, 18, pp. 677-684 
504 |a Dickinson, E., Structure formation in casein-based gels, foams, and emulsions (2006) Colloid Surf A Physicochem Eng Aspects, 288, pp. 3-11 
504 |a Hiemenz, P.C., Rajagopalan, R., Electrostatic and polymer-induced colloid stability (1997) Principles of colloid and surface chemistry, pp. 575-624. , Marcel Dekker, New York, USA 
504 |a Berli, C.L.A., Quemada, D., Parker, A., Modelling the viscosity of depletion flocculated emulsions (2002) Colloid Surf A Physicochem Eng Aspects, 203, pp. 11-20 
504 |a McClements, D.J., Critical review of techniques and methodologies for characterization of emulsion stability (2007) Crit Rev Food Sci Nutr, 47, pp. 611-649 
504 |a Day, L., Xu, M., Hoobin, P., Burgar, I., Augustin, M.A., Characterization of fish oil emulsions stabilized by sodium caseinate (2007) Food Chem, 105, pp. 469-479 
504 |a Eliot, C., Horne, D.S., Dickinson, E., Understanding temperature-sensitive caseinate emulsions: new information from diffusing wave spectroscopy (2005) Food Hydrocoll, 19, pp. 279-287 
504 |a Hemar, Y., Pinder, D.N., Hunter, R.J., Singh, H., Hébraud, P., Horne, D.S., Monitoring of flocculation and creaming of sodium-caseinate-stabilized emulsions using diffusing-wave spectroscopy (2003) J Colloid Interface Sci, 264, pp. 502-508 
504 |a Ruis, H.G.M., Venema, P., van der Linden, E., Diffusing wave spectroscopy used to study the influence of shear on aggregation (2008) Langmuir, 24, pp. 7117-7123 
504 |a Balinov, B., Mariette, F., Söderman, O., NMR studies of emulsions with particular emphasis on food emulsions (2004) food emulsions, pp. 593-632. , Marcel Dekker, Inc., New York, USA, S.E. Friberg, K. Larsson, J. Sjöbolm (Eds.) 
504 |a Álvarez Cerimedo, M.S., Huck Iriart, C., Candal, R.J., Herrera, M.L., Stability of emulsions formulated with high concentrations of sodium caseinate and trehalose (2010) Food Res Int, 43, pp. 1482-1493 
504 |a Mengual, O., Meunier, G., Cayré, I., Puech, K., Snabre, P., Turbiscan MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis (1999) Talanta, 50, pp. 445-456 
504 |a Chauvierre, C., Labarre, D., Couvreur, P., Vauthier, C., A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties (2004) Colloid Polymer Sci, 282, pp. 1097-1104 
504 |a Radford, S.J., Dickinson, E., Golding, M., Stability and rheology of emulsions containing sodium caseinate: Combined effects of ionic calcium and alcohol (2004) J Colloid Interface Sci, 274, pp. 673-686 
504 |a Palazolo, G.G., Sorgentini, D.A., Wagner, J.R., Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates (2005) Food Hydrocoll, 19, pp. 595-604 
504 |a Cerdeira, M., Palazolo, G.G., Candal, R.J., Herrera, M.L., Factors affecting initial retention of a microencapsulated sunflower seed oil/milk fat fraction blend (2007) J Am Oil Chem Soc, 84, pp. 523-531 
504 |a Dickinson, E., Milk protein interfacial layers and the relationship to emulsion stability and rheology (2001) Colloid Surf B Biointerfaces, 20, pp. 197-210 
504 |a Eliot, C., Dickinson, E., Thermoreversible gelation of caseinate-stabilized emulsions at around body temperature (2003) Int Dairy J, 13, pp. 679-684 
504 |a Needs, E.C., Stenning, R.A., Gill, A.L., Ferragut, V., Rich, G.T., High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation (2000) J Dairy Res, 67, pp. 31-42 
504 |a Dickinson, E., Eliot, C., Defining the conditions for heat-induced gelation of a caseinate-stabilized emulsion (2003) Colloid Surf B, 29, pp. 89-97 
504 |a Schokker, E.P., Dalgleish, D.G., Orthokinetic flocculation of caseinate-stabilized emulsions: Influence of calcium concentration, shear rate, and protein content (2000) J Agric Food Chem, 48, pp. 198-203 
504 |a Manski, J.M., van der Goot, A.J., Boom, R.M., Influence of shear during enzymatic gelation of caseinate-water and caseinate-water-fat systems (2007) J Food Eng, 79, pp. 706-717 
504 |a Allen, K.E., Murray, B.S., Dickinson, E., Whipped cream-like textured systems based on acidified caseinate-stabilized oil-in-water emulsions (2008) Int Dairy J, 18, pp. 1011-1021 
504 |a Tangsuphoom, N., Coupland, J.N., Effect of surface-active stabilizers on the microstructure and stability of coconut milk emulsions (2008) Food Hydrocoll, 22, pp. 1233-1242 
504 |a Tangsuphoom, N., Coupland, J.N., Effect of thermal treatments on the properties of coconut milk emulsions prepared with surface-active stabilizers (2009) Food Hydrocoll, 23, pp. 1792-1800 
504 |a O'Regan, J., Mulvihill, D.M., Preparation, characterization and selected functional properties of sodium caseinate-maltodextrin conjugates (2009) Food Chem, 115, pp. 1257-1267 
504 |a Bot, A., Veldhuizen, Y.S.J., den Adel, R., Roijers, E.C., Non-TAG structuring of edible oils and emulsions (2009) Food Hydrocoll, 23, pp. 1184-1189 
504 |a Lesmes, U., Sandra, S., Decker, E.A., McClements, D.J., Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilized by caseinate (2010) Food Chem, 123, pp. 99-106 
504 |a Guzun-Cojocaru, T., Cayot, P., Loupiac, C., Cases, E., Effect of iron chelates on oil-water interface, stabilized by milk proteins: the role of phosphate groups and pH. Prediction of iron transfer from aqueous phase toward fat globule surface by changes of interfacial properties (2010) Food Hydrocoll, 24, pp. 364-373 
504 |a O'Regan, J., Mulvihill, D.M., Heat stability and freeze-thaw stability of oil-in-water emulsions stabilized by sodium caseinate-maltodextrin conjugates (2010) Food Chem, 119, pp. 182-190 
504 |a Liu, J., Verespej, E., Alexander, M., Corredig, M., Comparison on the effect of high-methoxyl pectin or soybean-soluble polysaccharide on the stability of sodium caseinate-stabilized oil/water emulsions (2007) J Agric Food Chem, 55, pp. 6270-6278 
504 |a Sosa-Herrera, M.G., Berli, C.L.A., Martínez-Padilla, L.P., Physicochemical and rheological properties of oil-in-water emulsions prepared with sodium caseinate/gellan gum mixtures (2008) Food Hydrocoll, 22, pp. 934-942 
504 |a Perrechil, F.A., Cunha, R.L., Oil-in-water emulsions stabilized by sodium caseinate: influence of pH, high-pressure homogenization and locust bean gum addition (2010) J Food Eng, 97, pp. 441-448 
504 |a Semenova, M.G., Belyakova, L.E., Polikarpov, Y.N., Antipova, A.S., Dickinson, E., Light scattering study of sodium caseinate+dextran sulfate in aqueous solution: relationship to emulsion stability (2009) Food Hydrocoll, 23, pp. 629-639 
504 |a Jourdain, L., Leser, M.E., Schmitt, C., Michel, M., Dickinson, E., Stability of emulsions containing sodium caseinate and dextran sulfate: relationship to complexation in solution (2008) Food Hydrocoll, 22, pp. 647-659 
504 |a Kalnin, D., Quennesson, P., Artzner, F., Schafer, O., Narayanan, T., Ollivon, M., Monitoring both fat crystallization and self-assembly of sodium caseinate in model emulsions using synchrotron X-ray diffraction (2004) Progr Coll Polym Sci, 126, pp. 139-145 
504 |a Kalnin, D., Ouattara, M., Ollivon, M., A new method for the determination of the concentration of free and associated sodium caseinate in model emulsions (2004) Prog Colloid Polym Sci, 128, pp. 207-211 
504 |a Dickinson, E., Golding, M., Influence of alcohol on stability of oil-in-water emulsions containing sodium caseinate (1998) J Colloid Interface Sci, 197, pp. 133-141 
504 |a Burgaud, I., Dickinson, E., Emulsifying effects of food macromolecules in presence of ethanol (1990) J Food Sci, 55, pp. 875-876 
504 |a Dickinson, E., Davies, E., Influence of ionic calcium on stability of sodium caseinate emulsions (1999) Colloid Surf B Biointerfaces, 12, pp. 203-212 
504 |a Medina-Torres, L., Calderas, F., Gallegos-Infante, J.A., González-Laredo, R.F., Rocha-Guzmán, N., Stability of alcoholic emulsions containing different caseinates as a function of temperature and storage time (2009) Colloid Surf A Physicochem Eng Aspects, 352, pp. 38-46 
504 |a Moschakis, T., Murray, B.S., Dickinson, E., Microstructural evolution of viscoelastic emulsions stabilized by sodium caseinate and xanthan gum (2005) J Colloid Interface Sci, 284, pp. 714-728 
504 |a Garti, N., Food emulsifiers: structure-reactivity relationships, design, and applications (2002) Physical Properties of Lipids, pp. 265-386. , Marcel Dekker, Inc., New York, USA, A.G. Marangoni, S.S. Narine (Eds.) 
504 |a Walker, D.B., Joshi, G., Davis, A.P., Progress in biomimetic carbohydrate recognition (2009) Cell Mol Life Sci, 66, pp. 3177-3191 
504 |a Belyakova, L.E., Antipova, A.S., Semenova, M.G., Dickinson, E., Merino, L.M., Tsapkina, E.N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation (2003) Colloid Surf B Biointerfaces, 31, pp. 31-46 
520 3 |a The physicochemical properties of emulsions play an important role in food systems as they directly contribute to texture, sensory and nutritional properties of foods. Sodium caseinate (NaCas) is a well-used ingredient because of its good solubility and emulsifying properties and its stability during heating. One of most significant aspects of any food emulsion is its stability. Among the methods used to study emulsion stability it may be mentioned visual observation, ultrasound profiling, microscopy, droplet size distribution, small deformation rheometry, measurement of surface concentration to characterize adsorbed protein at the interface, nuclear magnetic resonance, confocal microscopy, diffusing wave spectroscopy, and turbiscan. They have advantages and disadvantages and provide different insights into the destabilization mechanisms. Related to stability, the aspects more deeply investigated were the amount of NaCas used to prepare the emulsion, and specially the oil-to-protein ratio, the mobility of oil droplets and the interactions among emulsion components at the interface. It is known that the amount of protein required to stabilize oil-in-water emulsions depends, not only on the structure of protein at the interface, and the average diameters of the emulsion droplets, but also on the type of oils and the composition of the aqueous phase. Several authors have investigated the effect of a thickening agent or of a surface active molecule. Factors such as pH, temperature, and processing conditions during emulsion preparation are also very relevant to stability. There is a general agreement among authors that the most stable systems are obtained for conditions that produce size reduction of the droplets, an increase in viscosity of the continuous phase and structural changes in emulsions such as gelation. All these conditions decrease the molecular mobility and slow down phase separation. © 2011 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA, X 451 
536 |a Detalles de la financiación: National Science and Technology Development Agency, NSTDA 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT, PICT 0060 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, PIP 11220080101504 
536 |a Detalles de la financiación: María L. Herrera and Roberto J. Candal are researchers of the National Research Council of Argentina (CONICET). This work was supported by CONICET through Project PIP 11220080101504, by the National Agency for the Promotion of Science and Technology (ANPCyT) through Project PICT 0060, and by the University of Buenos Aires through Project X 451. The authors wish to thank to the Synchrotron Light National Laboratory (LNLS, Campinas, Brazil) for the use of X-ray facilities and the SPES company for providing the concentrated from fish oils. 
593 |a Inst. de Quimica Inorgánica, Medio Ambiente y Energía (INQUIMAE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pabellón 2 Piso 3, C1428EHA Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Avda. Intendente Güiraldes, 1428 Buenos Aires, Argentina 
593 |a Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, CP 1650, San Martín, Provincia de Buenos Aires, Argentina 
690 1 0 |a EMULSION 
690 1 0 |a SODIUM CASEINATE 
690 1 0 |a STABILITY 
690 1 0 |a STRUCTURE 
690 1 0 |a CONVERGENCE OF NUMERICAL METHODS 
690 1 0 |a DROP BREAKUP 
690 1 0 |a EMULSIONS 
690 1 0 |a GELATION 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a OILS AND FATS 
690 1 0 |a PHASE INTERFACES 
690 1 0 |a PHASE SEPARATION 
690 1 0 |a PROTEINS 
690 1 0 |a SODIUM 
690 1 0 |a STABILITY 
690 1 0 |a STRUCTURE (COMPOSITION) 
690 1 0 |a DESTABILIZATION MECHANISMS 
690 1 0 |a DIFFUSING-WAVE SPECTROSCOPY 
690 1 0 |a DROPLET SIZE DISTRIBUTIONS 
690 1 0 |a NUTRITIONAL PROPERTIES 
690 1 0 |a OIL-IN-WATER EMULSIONS 
690 1 0 |a PHYSICOCHEMICAL PROPERTY 
690 1 0 |a SODIUM CASEINATE 
690 1 0 |a SURFACE-ACTIVE MOLECULES 
690 1 0 |a EMULSIFICATION 
690 1 0 |a ALCOHOL 
690 1 0 |a CALCIUM ION 
690 1 0 |a CASEIN 
690 1 0 |a CASEINATE 
690 1 0 |a FAT DROPLET 
690 1 0 |a LIPID EMULSION 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a WATER OIL CREAM 
690 1 0 |a CONFOCAL LASER MICROSCOPY 
690 1 0 |a FLOCCULATION 
690 1 0 |a FLOW KINETICS 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a MOLECULAR STABILITY 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a PHASE SEPARATION 
690 1 0 |a PHYSICAL PHASE 
690 1 0 |a PROTEIN CONTENT 
690 1 0 |a PROTEIN STRUCTURE 
690 1 0 |a REVIEW 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TEMPERATURE SENSITIVITY 
690 1 0 |a VISCOELASTICITY 
690 1 0 |a X RAY CRYSTALLOGRAPHY 
650 1 7 |2 spines  |a PH 
700 1 |a Álvarez-Cerimedo, M.S. 
700 1 |a Candal, R.J. 
700 1 |a Herrera, M.L. 
773 0 |d Elsevier Ltd, 2011  |g v. 16  |h pp. 412-420  |k n. 5  |p Curr. Opin. Colloid Interface Sci.  |x 13590294  |w (AR-BaUEN)CENRE-4369  |t Current Opinion in Colloid and Interface Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052864435&doi=10.1016%2fj.cocis.2011.06.003&partnerID=40&md5=bf04a1a434e30fe37efb208a1ea6e448  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.cocis.2011.06.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13590294_v16_n5_p412_HuckIriart  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13590294_v16_n5_p412_HuckIriart  |y Registro en la Biblioteca Digital 
961 |a paper_13590294_v16_n5_p412_HuckIriart  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71196