Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments

Through evolution, microorganisms have developed effective mechanisms that help them regulate their cellular function in response to changes in its microenvironment. One of these survival strategies is metal resistance, which becomes a useful tool for biotreatment of metal loaded wastewaters. For th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barrionuevo, Melina
Otros Autores: Alejandra, M., Garavaglia, L., López, N., Méndez, N., Sosa, G., Candal, R., Cerdeira, S., Ceretti, H., Ramírez, S., Reciulschi, E., Zalts, A., Vullo, D.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2011
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15485caa a22010697a 4500
001 PAPER-10123
003 AR-BaUEN
005 20250421121211.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84891970069 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barrionuevo, Melina 
245 1 0 |a Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments 
260 |b Nova Science Publishers, Inc.  |c 2011 
270 1 0 |m Barrionuevo, M.; Área Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina 
504 |a Ackerley, D.F., Gonzalez, C.F., Keyhan, M., Blake II, R., Matin, A., Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction (2004) Environmental Microbiology, 6 (8), pp. 851-860 
504 |a Bridge, T.A.M., White, C., Gadd, G.M., Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans (1999) Microbiology, 145, pp. 2987-2995 
504 |a Bruland, K., Complexation of cadmium by natural organic ligands in the central North Pacific (1992) Limnology and Oceanography, 37 (5), pp. 1008-1017 
504 |a Butterman, W.C., Reston, J.P., Mineral Commodity Profiles-Cadmium (2000) U.S. Geological Survey, Open-File Report 02-238, , http://pubs.usgs.gov/of/2002/of02-238/of02-238.pdf 
504 |a Caiazza, N., Merrit, J., Brothers, K., O'Toole, G., Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14 (2007) Journal of Bacteriology, 189 (9), pp. 3603-3612 
504 |a Ceretti, H.M., Vullo, D.L., Zalts, A., Ramírez, S.A., Cadmium Complexation in culture media (2006) Electroanalysis, 18 (5), pp. 493-498 
504 |a Ceretti, H.M., Vullo, D.L., Zalts, A., Ramírez, S.A., Effect of bacterial growth in the complexing capacity of a culture medium supplemented with cadmium(II) (2010) World Journal of Microbiology and Biotechnology, 26, pp. 847-853 
504 |a Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X., Chen, Y.X., Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1 (2005) Colloids and Surfaces B: Biointerfaces, 46, pp. 101-107 
504 |a Cobelo-García, A., Prego, R., Nieto, O., Chemical speciation of dissolved lead in polluted environments. A case study: the Pontevedra Ria (NW Spain) (2003) Ciencias Marinas, 29, pp. 377-388 
504 |a Davis, T.A., Volesky, B., Mucci, A., A review of the biochemistry heavy metal biosorption by brown algae (2003) Water Research, 37, pp. 4311-4330 
504 |a Domingos, R.F., Benedetti, M.F., Croué, J.P., Pinheiro, J.P., Electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters (2004) Analytica Chimica Acta, 521, pp. 77-86 
504 |a Donnat, J.R., Van Den Berg, C.M.G., A new cathodic stripping voltammetric method for determining organic copper complexation in seawater (1992) Marine Chemistry, 38, pp. 69-90 
504 |a EC Proposal for a European Parliament and Council Decision Establishing the List of Priority Substances in the Field of Water Policy (2000), Brussels, Belgium, European Commission; COM, 47 Final; Eisler, R., Chromium hazards to fish, wildlife, and invertebrates: a synoptic review; Contaminant Hazard Reviews (Report N° 6) (1986) Biological Report, 85. , (1.6) 
504 |a Eisler, R., Nickel hazards to fish, wildlife, and invertebrates: a synoptic review; Contaminant Hazard Reviews (Report N° 34) (1998) Biological Science Report USGS/BRD/BSR-1998-0001 
504 |a Fernandez-Pinas, F., Mateo, P., Bonilla, I., Binding of cadmium by cyanobacterial growth media: Free ion concentration as a toxicity index to the cyanobacterium Nostoc UAM 208 (1991) Archives of Environmental Contamination and Toxicology, 21, pp. 425-431 
504 |a Freundlich, H., Kapillarchemie. Akademische Verlagsgessellschaft (1909), Leipzig, Germany; Gadd, G.M., Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment (2009) Journal of Chemical Technology & Biotechnology, 84, pp. 13-28 
504 |a Garavaglia, L., Cerdeira, S.B., Vullo, D.L., Chromium (VI) biotransformation by β-and γ-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes (2010) Journal of Hazardous Materials, 175, pp. 104-110 
504 |a Gonzalez Gil, G., Jansen, S., Zandvoort, M.H., Van Leewen, H.P., Effect of yeast extra ton speciation and bioavailability of nickel and cobalto in anaerobic reactors (2003) Biotechnology and Bioengineering, 82, pp. 134-142 
504 |a Gordon, R.B., Bertram, M., Graedel, T.E., Metal Stocks and Sustainability, PNAS (2006), 103, pp. 1209-1214; Guibaud, G., Bordas, F., Saaid, A., D'abzac, P., Van Hullebusch, E., Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains (2008) Colloids and Surfaces B: Biointerfaces, 63, pp. 48-54 
504 |a Guibaud, G., Van Hullebusch, B.F., D'Abzac, P., Joussein, E., Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect an role of the mineral fraction (2009) Bioresource Technology, 100, pp. 2959-2968 
504 |a Hermoso, F.G., Bartacek, J., Janseri, S., Lens, P.N.L., Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application (2009) Science of Total Environment, 407, pp. 3652-3667 
504 |a Jefferson, K., What drives bacteria to produce a biofilm? (2004) FEMS Microbiology Letters, 236, pp. 163-173 
504 |a Johnson, J., Harper, E.M., Lifset, R., Graedel, T.E., Dining at the Periodic Table: Metals Concentrations as They Relate to Recycling (2007) Environmental Science and Technology, 41, pp. 1759-1765 
504 |a Kato, J., Kim, H.E., Takiguchi, N., Kuroda, A., Ohtake, H., Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviours in ecosystem (2008) Journal of Bioscience and Bioengineering, 106, pp. 1-7 
504 |a Laglera, L.M., Battaglia, G., Van Den Berg, C.M.G., Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron (2007) Analytica Chimica Acta, 599, pp. 58-66 
504 |a Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of American Chemical Society, 40, pp. 1361-1403 
504 |a Méndez, M., Ramírez, S.A.M., Ceretti, H.M., Zalts, A., Candal, R., Vullo, D.L., Pseudomonas veronii 2E surface interactions with Zn(II) and Cd(II) (2011) Global Journal of Environmental Science and Technology, , (in press) 
504 |a Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Wattiez, R., Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes (2003) FEMS Microbiology Reviews, 27, pp. 385-410 
504 |a Meylan, S., Odzak, N., Behra, R., Sigg, L., Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models (2004) Analytica Chimica Acta, 510, pp. 91-100 
504 |a Minaberry, Y.S., Gordillo, G.J., Complexing capacity of natural waters carrying a great amount of suspended matter (2007) Chemosphere, 69 (9), pp. 1465-1473 
504 |a Opperman, D.J., Van Heerden, E., Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01 (2007) Journal of Applied Microbiology, 103, pp. 1907-1913 
504 |a Pal, A., Paul, A.K., Microbial extracellular polymeric substances: central elements in heavy metal bioremediation (2008) Indian Journal of Microbiology, 48, pp. 49-64 
504 |a Pesavento, M., Alberti, G., Biesuz, R., Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review (2009) Analytica Chimica Acta, 631, pp. 129-141 
504 |a Prado Acosta, M., Valdman, E., Leite, S.G.F., Battaglini, F., Ruzal, S.M., Biosorption of copper by Paenibacillus polimyxa cells and their exopolysaccharide (2005) World Journal of Microbiology and Biotechnology, 21, pp. 1157-1163 
504 |a Santos-Echeandía, J., Laglera, L.M., Prego, R., Van Den Berg, C.M.G., Copper speciation in estuarine waters by forward and reverse titrations (2008) Marine Chemistry, 108, pp. 148-158 
504 |a SAyDS: Secretaría de Ambiente y Desarrollo Sustentable. Programa de vigilancia y control http://www.caru.org.uy/13.pdf, Contaminación hídrica industrial. Estudio de caso: Establecimientos Potencialmente Generadores de Metales Pesados Area Metropolitana-; Scarponi, G., Capodaglio, G., Barbante, C., Cescon, P., Elemental Speciation (1996) Bioinorganic Chemistry, p. 363. , In S. Caroli (Ed.), Wiley, Chichester 
504 |a Shrout, J., Chopp, D., Just, C., Hentzer, M., Givskov, M., Parsek, M., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional (2006) Molecular Microbiology, 62 (5), pp. 1264-1277 
504 |a Sigg, L., Sturm, M., Kistler, D., Vertical transport of heavy metals by settling particles in Lake Zurich (1987) Limnology and Oceanography, 32, pp. 112-130 
504 |a Teitzel, G.M., Parsek, M.R., Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa (2003) Applied and Environmental Microbiology, 69 (4), pp. 2313-2320 
504 |a Thacker, U., Parikh, R., Shouche, Y., Madamwar, D., Reduction of chromate by cell-free extract of Brucella sp. Isolated from Cr (VI) contaminated sites (2007) Bioresource Technology, 98, pp. 1541-1547 
504 |a Town, R.M., Filella, M., Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt (2002) Analytica Chimica Acta, 466, pp. 285-293 
504 |a Van Leeuwen, H., Cleven, R., Buffle, J., Voltammetric techniques for complexation measurements in natural aquatic media (1989) Pure & Applied Chemistry, 61, pp. 255-274 
504 |a Van Veen, E., Burton, E.N., Comber, S., Gardner, M., Speciation of Copper in sewage effluents and its toxicity to Daphnia Magna (2002) Environmental Toxicology and Chemistry, 21 (2), pp. 275-280 
504 |a Vijayaraghavan, K., Yun, Y., Bacterial biosorbents and biosorption (2008) Biotechnology Advances, 26, pp. 266-291 
504 |a Volesky, B., Detoxification of metal-bearing effluents: biosorption for the next century (2001) Hydrometallurgy, 59, pp. 203-216 
504 |a Vullo, D.L., Ceretti, H.M., Daniel, M.A., Ramírez, S.A.M., Zalts, A., Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E (2008) Bioresource Technology, 99, pp. 5574-5581 
504 |a Vullo, D.L., Ceretti, H.M., Ramírez, S.A.M., Zalts, A., Heavy metals and microorganisms in the environment: taking advantage of reciprocal interactions for the development of a wastewater treatment (2007) Progress in Environmental Microbiology, pp. 111-149. , In Myung-Bo Kim Eds., Nova Science Publishers, Inc., New York 
504 |a Wang, J., Chen, C., Biosorbents for heavy metals removal and their future (2009) Biotechnolology Advances, 27, pp. 195-226 
504 |a Wang, R., Chakrabarti, C.L., Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand (2008) Analytica Chimica Acta, 614, pp. 153-160 
504 |a Wisniewski Jakubaa, R., Moffett, J.W., Saito, M.A., Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean (2008) Analytica Chimica Acta, 614, pp. 143-152 
504 |a Xue, H., Sigg, L., Cadmium speciation and complexation by natural organic ligands in fresh water (1998) Analytica Chimica Acta, 363, pp. 249-259 
504 |a Yin, P., Yu, Q., Jin, B., Ling, Z., Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater (1999) Water Research, 33, pp. 1960-1963 
506 |2 openaire  |e Política editorial 
520 3 |a Through evolution, microorganisms have developed effective mechanisms that help them regulate their cellular function in response to changes in its microenvironment. One of these survival strategies is metal resistance, which becomes a useful tool for biotreatment of metal loaded wastewaters. For the development of a successful biotreatment, studies on metal-microbes, microbe-surfaces and metal-environment interactions are required. The correct design of laboratory scale bioreactors for electroplating wastes, containing Cd(II), Zn(II), Ni(II) or Cr(VI), is the first step of our research project. In that way, the use of metal resistant indigenous bacteria either in suspension or in packed bed reactors is the chosen methodology to fulfil our general aim. Several aspects should be studied in order to implement high-efficient processes: a) bacterial interactions with Cd(II) and Zn(II) in terms of biosorption mechanisms; b) biotransformation of Cr(VI) to Cr(III); c) Ni(II)-microbe interactions; d) metal influence on bacterial motility; e) bacterial capacity of biofilm development and microbial community behaviour and f) complexing capacity of environment components with metals. © 2010 Nova Science Publishers, Inc. All rights reserved.  |l eng 
593 |a Área Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina 
593 |a Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria, Buenos Aires, Argentina 
593 |a INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria, Buenos Aires, Argentina 
593 |a ECyT-UNSAM, Campus Miguelete, Buenos Aires, Argentina 
700 1 |a Alejandra, M. 
700 1 |a Garavaglia, L. 
700 1 |a López, N. 
700 1 |a Méndez, N. 
700 1 |a Sosa, G. 
700 1 |a Candal, R. 
700 1 |a Cerdeira, S. 
700 1 |a Ceretti, H. 
700 1 |a Ramírez, S. 
700 1 |a Reciulschi, E. 
700 1 |a Zalts, A. 
700 1 |a Vullo, D.L. 
773 0 |d Nova Science Publishers, Inc., 2011  |h pp. 383-403  |p Bioremediation: Biotechnology, Eng. and Environ. Manage.  |z 9781611227307  |t Bioremediation: Biotechnology, Engineering and Environmental Management 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891970069&partnerID=40&md5=27da00478f6916257b9e0d0bb937f13e  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816112_v_n_p383_Barrionuevo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo  |y Registro en la Biblioteca Digital 
961 |a paper_97816112_v_n_p383_Barrionuevo  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 71076