To be or not to be shade tolerant: Water and carbon economy in tree species of the Atlantic Forest (Misiones, Argentina)

In tropical and subtropical moist forests the most important factor limiting plant growth is solar radiation. On this basis, tree species had traditionally been classified into two functional groups based on their requirements for germination, establishment and growth. While shade-tolerant species g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Campanello, P.I
Otros Autores: Genoveva Gatti, M., Montti, L., Villagra, M., Goldstein, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Español
Publicado: 2011
Materias:
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23215caa a22017177a 4500
001 PAPER-10116
003 AR-BaUEN
005 20230518204007.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-83455237828 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
041 0 |a eng  |a spa 
100 1 |a Campanello, P.I. 
245 1 3 |a To be or not to be shade tolerant: Water and carbon economy in tree species of the Atlantic Forest (Misiones, Argentina) 
246 3 1 |a Ser o no ser tolerante a la sombra: Economía de agua y carbono en especies arbóreas del bosque atlántico (Misiones, Argentina) 
260 |c 2011 
270 1 0 |m Campanello, P. I.; Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones, CONICET, Andresito 21, Puerto Iguazú, (3370) Misiones, Argentina; email: pcampanello@yahoo.com 
506 |2 openaire  |e Política editorial 
504 |a Aide, T.M., Cavelier, J., Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia (1994) Restor. Ecol, 2, pp. 219-229 
504 |a Alder, N.N., Sperry, M.T., Pockman, W.T., Root and stem xylem embolism, stomatal conductance and leaf turgor in Acer grandidentatum populations along a soil moisture gradient (1996) Oecologia, 105, pp. 293-301 
504 |a Augspurger, C.K., Ck, K.E.L.L.Y., Pathogen mortality of tropical tree seedlings: Experimental studies of the effects of dispersal distance, seedling density, and light conditions (1984) Oecologia, 61, pp. 211-217 
504 |a Augspurger, C.K., Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens (1984) Ecology, 65, pp. 1705-1712 
504 |a Augspurger, C.K., Light requirements of neotropical tree seedlings: A comparative study of growth and survival (1984) J. Ecol, 72, pp. 777-795 
504 |a Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett, 13, pp. 1338-1347 
504 |a Barker, M.G., Press, M.C., Brown, N.D., Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: A basis for niche partitioning? (1997) Oecologia, 112, pp. 453-463 
504 |a Barone, K.A., Coley, P.D., Herbivorismo y las defensas de las plantas (2002) Ecología Y Conservación De Bosques Neotropicales, p. 692. , Libro Universitario Regional, Costa Rica en: Guariguata, MR & GH Kattan (eds.) 
504 |a Bazzaz, F.A., Pickett, S.T.A., Physiological ecology of tropical succession: A comparative review (1980) Ann. Rev. Ecol. Syst, 11, pp. 287-310 
504 |a Bond, B.J., Kavanagh, K.L., Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential (1999) Tree Physiol, 19, pp. 503-510 
504 |a Brodribb, T.J., Feild, T.S., Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rain forests (2000) Plant Cell Environ, 23, pp. 1381-1388 
504 |a Brodribb, T.J., Holbrook, N.M., Gutiérrez, M.V., Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees (2002) Plant Cell Environ, 25, pp. 1435-1444 
504 |a Brodribb, T.J., Holbrook, N.M., Edwards, E.J., Gutiérrez, M.V., Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees (2003) Plant, Cell and Environment, 26, pp. 443-450 
504 |a Brokaw, N.V.L., Gap-phase regeneration in a tropical forest (1985) Ecology, 66, pp. 682-687 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant (2004) Tree Physiol, 24, pp. 891-899 
504 |a Campanello, P., (2004) Diversidad, Crecimiento Y Fisiología De Árboles En La Selva Misionera: Efectos De Los Cambios En La Estructura Y Funcionamiento Del Ecosistema Producidos Por La Invasión De Lianas Y Bambúseas, , Tesis doctoral, Universidad de Buenos Aires, Argentina 
504 |a Campanello, P.I., Montti, L., Macdonagh, P., Goldstein, G., Reduced-Impact Logging and Post-Harvest Management in the Atlantic Forest of Argentina: Alternative approaches to enhance regeneration and growth of canopy trees (2009) Forest Management, pp. 39-59. , en: Grossberg, SP (ed.), Nova Science Publishers, New York 
504 |a Campanello, P.I., Gatti, M.G., Goldstein, G., Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances (2008) Tree Physiol, 28, pp. 85-94 
504 |a Campanello, P.I., Gatti, M.G., Ares, A., Montti, L., Goldstein, G., Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest (2007) For. Ecol. Manage, 252, pp. 108-117 
504 |a Cavelier, J., Vargas, G., Procesos hidrológicos (2002) Ecología Y Conservación De Bosques Neotropicales, p. 692. , en: Guariguata, MR & GH Kattan (eds.), Libro Universitario Regional, Costa Rica 
504 |a Chapman, C.A., Chapman, L.J., Forest restoration in abandoned agricultural land: A case study from East Africa (1999) Conserv. Biol, 13, pp. 1301-1311 
504 |a Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366 
504 |a Chazdon, R.L., Sunflecks and their importance to forest understory plants (1988) Adv. Ecol. Res, 18, pp. 1-63 
504 |a Chazdon, R.L., Pearcy, R.W., Lee, D.W., Fetcher, N., Photosynthetic responses to contrasting light environments (1996) Tropical Plant Ecophysiology, , Mulkey, S; RL Chazdon & AP Smith (eds.), Chapman and Hall, New York, USA 
504 |a Clark, D.A., Clark, D.B., Life history diversity of canopy and emergent trees in a neotropical rain forest (1992) Ecol. Monogr, 62, pp. 315-344 
504 |a Clark, D.B., Clark, D.A., Rich, P.M., Weiss, S., Oberbauer, S.F., Landscape scale evaluation of understory light and canopy structure: Methods and application in a neotropical lowland rain forest (1996) Can. J. For. Res, 26, pp. 747-757 
504 |a Cochard, H., Peiffer, M., Legall, K., Granier, A., Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinnus excelsior: Impacts on water relations (1997) J. Exp. Bot, 308, pp. 655-663 
504 |a Cochard, H., Lemoine, D., Dreyer, E., The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L (1999) Plant Cell Environ, 22, pp. 101-108 
504 |a Cochard, H., Cruiziat, P., Tyree, M.T., Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis (1992) Plant Physiol, 100, pp. 205-209 
504 |a Denslow, J.S., Hartshorn, G.S., Tree-fall gap environments and forest dynamic processes (1994) La Selva: Ecology and Natural History of a Neotropical Rain Forest, pp. 120-127. , en: McDade, LA (ed.), University of Chicago Press, Chicago. USA 
504 |a Denslow, J.S., Tropical rainforest gaps and tree species diversity (1987) Ann. Rev. Ecol. Sys, 18, pp. 431-451 
504 |a Domec, J.C., Gartner, B.L., Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees (2001) Trees, 15, pp. 204-214 
504 |a Enquist, B.J., West, G.B., Brown, J.H., Quarterpower allometric scaling in vascular plants: Functional basis and ecological consequences (1999) Scaling In Biology, pp. 167-199. , en: Brown, JH & GB West (eds.), Oxford University Press, Oxford 
504 |a Fetcher, N., Oberbauer, S.F., Chazdon, R.L., Physiological ecology of plants (1994) La Selva: Ecology and Natural History of a Neotropical Rainforest, pp. 25-55. , en: McDade, L; KS Bawa; H Hespenheide; G Hartshorn (eds.), University of Chicago Press, Chicago. USA 
504 |a Fichot, R., Chamaillard, S., Depardieu, C., le Thiec, D., Cochard, H., Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides Populus nigra hybrids (2011) J. Exp. Bot, 62, pp. 2093-2106 
504 |a Galindo-Leal, C., Gusmão Câmara, I., (2003) Atlantic Forest Hotspot Status: An Overview, pp. 3-11. , en: Galindo-Leal, C & I Gusmão Câmara (eds.). The Atlantic Forest of South America: biodiversity status, threats and outlook (1st edition). Island Press, Washington, USA 
504 |a Gartner, B.L., Meinzer, F.C., Structurefunction relationships in sapwood water transport and storage (2004) Long Distance Transport Systems In Plants: Integration and Coordination In Trees, , In: Zwieniecki, M & NM Holbrook (eds.), Academic Press, San Diego. USA 
504 |a Gatti, M.G., Campanello, P., Goldstein, G., Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina (2008) For. Ecol. Manage, 256, pp. 633-640 
504 |a Givnish, T.J., Adaptation to sun and shade, a whole plant perspective (1988) Aust. J. Plant Physiol, 15, pp. 63-92 
504 |a Goldstein, G., Meinzer, F.C., Andrade, J.L., El flujo de agua en los árboles del dosel (2002) Ecología Y Conservación De Bosques Neotropicales, p. 692. , en: Guariguata, MR & GH Kattan (eds.), Libro Universitario Regional, Costa Rica 
504 |a Grubb, P.J., The maintenance of speciesrichness in plant communities: The importance of the regeneration niche (1977) Biol. Rev, 52, pp. 107-145 
504 |a Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L., Scaling of angiosperm xylem structure with safety and efficiency (2006) Tree Physiol, 26, pp. 689-701 
504 |a Hacke, U.W., Sperry, J.S., Functional and ecological xylem anatomy (2001) Perspect. Plant Ecol. Evol. Syst, 4 (2), pp. 97-115 
504 |a Hacke, U.W., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461 
504 |a Harms, K.E., Wright, S.J., Calderón, O., Hernández, A., Herre, E.A., Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest (2000) Nature, 404, pp. 493-495 
504 |a Holl, K.D., Kappelle, M., Tropical forest recovery and restoration (1999) Trends Ecol. Evol, 14, pp. 378-379 
504 |a Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest (1999) Science, 283, pp. 554-557 
504 |a Jones, T.J., Luton, C.D., Santiago, L.S., Goldstein, G., Hydraulic constraints on photosynthesis in subtropical evergreen broad leaf forest and pine woodland trees of the Florida Everglades (2010) Trees, 24, pp. 471-478 
504 |a Katul, G., Leuning, R., Oren, R., Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model (2003) Plant Cell Environ, 26, pp. 339-350 
504 |a Kitajima, K., Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees (1994) Oecologia, 98, pp. 419-428 
504 |a Leite, P.F., Klein, R.M., Geografia do Brasil- Regiao Sul (1990) Rio De Janeiro, pp. 113-150. , Instituto Brasileiro de Geografia e Estatística-IBGE. Brasil 
504 |a Loehle, C., Namkoong, G., Constraints on Tree Breeding: Growth Tradeoffs, Growth Strategies, and Defensive Investments (1987) Forest Sci, 33, pp. 1089-1097 
504 |a Lusk, C.H., Reich, P.B., Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11cold-temperate tree species (2000) Oecologia, 123, pp. 318-329 
504 |a Maherali, H., Delucia, E.H., Sipe, T.W., Hydraulic adjustment of maple saplings to canopy gap formation (1997) Oecologia, 112, pp. 472-480 
504 |a Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85, pp. 2184-2199 
504 |a Markesteijn, L., Poorter, L., Hora, P., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148 
504 |a Maseda, P.H., Fernández, R.J., Stay wet or else: Three ways in which plants can adjust hydraulically to their environment (2006) J. Exp. Bot, 57, pp. 3963-3977 
504 |a Meinzer, F.C., Goldstein, G., Jackson, P., Holbrook, N.M., Gutiérrez, M.V., Environmental and physiological regulation of transpiration in tropical forest gap species: The influence of boundary layer and hydraulic conductance properties (1995) Oecologia, 101, pp. 514-522 
504 |a Meinzer, F.C., McCulloh, K.A., Lachenbruch, B., Woodruff, D.R., Johnson, D.M., The blind men and the elephant: The impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency (2010) Oecologia, 164, pp. 287-296 
504 |a Meinzer, F.C., Campanello, P.I., Domec, J.C., Gatti, M.G., Goldstein, G., Constraints on physiological function associated with branch architecture and wood density in tropical forest trees (2008) Tree Physiol, 28, pp. 1609-1617 
504 |a Mencuccini, M., The ecological significance of long distance water transport: Short term regulation, long term acclimation and the hydraulic costs of stature across plant life forms (2003) Plant Cell Environ, 26, pp. 163-182 
504 |a Montgomery, R.A., Chazdon, R.L., Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps (2002) Oecologia, 131, pp. 165-174 
504 |a Montti, L., Campanello, P.I., Goldstein, G., Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest (2011) Acta Oecol, 37, pp. 361-368 
504 |a Poorter, L., Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests (2009) New Phytol, 181, pp. 890-900 
504 |a Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phytol, 174, pp. 787-798 
504 |a Putz, F.E., Coley, P.D., Lu, K., Montalvo, A., Alello, A., Snapping and uprooting of trees: Structural determinants and ecological characteristics (1983) Can. J. Forest Res, 13, pp. 1011-1102 
504 |a Raiskila, S., Saranpää, P., Fagerstedt, K., Laakso, T., Löija, M., Growth rate and wood properties of Norway Spruce cutting clones on different sites (2006) Silva Fennica, 40, pp. 247-256 
504 |a Reich, P.B., Tjoelker, M.G., Walters, M.B., Vanderklein, D.W., Buschena, C., Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light (1998) Funct. Ecol, 12, pp. 327-338 
504 |a Salleo, S., Hinckley, T.M., Kikuta, S.B., Logullo, M.A., Weilogny, M.A., A method for inducing xylem emboli: In situ experiments with a field grown tree (1992) Plant Cell Environ, 15, pp. 491-497 
504 |a Sanford, R.L., Braker, H.E., Hartshorn, G.S., Canopy openings in a primary neotropical lowland forest (1986) J. Trop. Ecol, 2, pp. 227-282 
504 |a Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140, pp. 543-550 
504 |a Schnitzer, S.A., Carson, W.P., Have we forgotten the forest because of the trees? (2000) Trends Ecol. Evol, 15, pp. 375-376 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Biophysical properties and functional significance of stem water storage tissues in neo-tropical savanna trees (2007) Plant Cell Environ, 30, pp. 236-248 
504 |a Schultz, H.R., Matthews, M.A., Xylem development and hydraulic conductance in sun and shade shoots of grapevine Vitis vinifera L.: Evidence that low light uncouples water transport capacity from leaf area (1993) Planta, 190, pp. 393-406 
504 |a Shumway, D.L., Steiner, K.C., Kolb, T.E., Variation in seedling hydraulic architecture as a function of species and environment (1993) Tree Physiol, 12, pp. 41-54 
504 |a Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant Cell Environ, 11, pp. 35-40 
504 |a Sperry, J.S., Nichols, K.L., Sullivan, J.E.M., Eastlack, S.E., Xylem embolism in ring-porous, diffuseporous and coniferous trees of northern Utah and interior Alaska (1994) Ecology, 75, pp. 1736-1752 
504 |a Sperry, J.S., Hacke, U.G., Oren, R., Comstock, J.P., Water deficits and hydraulic limits to leaf water supply (2002) Plant Cell Environ, 25, pp. 251-263 
504 |a Stratton, L., Goldstein, G., Meinzer, F.C., Stem water storage and efficiency of water transport: Their functional significance in a Hawaiian dry forest (2000) Plant Cell Environ, 23, pp. 99-106 
504 |a Swaine, M.D., Whitmore, T.C., On the definition of ecological species groups in tropical rain forests (1988) Vegetatio, 75, pp. 81-86 
504 |a Tabarelli, M., Mantovani, W., Gap-phase regeneration in a tropical montane forest: The effects of gap structure and bamboo species (2000) Plant Ecol, 148, pp. 149-155 
504 |a Tyree, M.T., Ewers, F.W., Tansley review No. 34 The Hydraulic architecture of trees and other woody plants (1991) New Phytol, 119, pp. 345-360 
504 |a Tyree, M.T., Davis, S.D., Cochard, H., Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? (1994) Int. Assoc. Wood Anat. J, 15, pp. 335-360 
504 |a Uhl, C., Clark, K., Dezzeo, N., Maquino, P., Vegetation dynamics in Amazonian treefall gaps (1988) Ecology, 69, pp. 751-763 
504 |a van Dam, O., Forest filled with gaps. The effect of gap size on microclimate, water and nutrient cycling (2001) A Study In Guyana, , Ph.D. Thesis, Utrecht University, Netherlands 
504 |a Welden, C.W., Hewett, S.W., Hubell, S.P., Foster, R.B., Sapling survival, growth and recruitment: Relationship to canopy height in a neotropical forest (1991) Ecology, 72, pp. 35-50 
504 |a Whitmore, T.C., Canopy gaps and the two major groups of forest trees (1989) Ecology, 70, pp. 536-538 
504 |a Wright, S.J., Plant diversity in tropical forests: A review of mechanisms of species coexistence (2002) Oecologia, 130, pp. 1-14 
504 |a Wright, S.J., Muller-Landau, H.C., Condit, R., Hubbell, S.P., Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees (2003) Ecology, 84, pp. 3174-3185 
520 3 |a In tropical and subtropical moist forests the most important factor limiting plant growth is solar radiation. On this basis, tree species had traditionally been classified into two functional groups based on their requirements for germination, establishment and growth. While shade-tolerant species germinate, grow and establish in places with low solar radiation, intolerant species require high irradiances for development. However, spatiotemporal variations in solar radiation exist within forests and most species show intermediate characteristics between the two extreme categories, forming a continuous gradient of ecophysiological responses. In this work we analyze the adaptations related to water and carbon economy (e.g., wood density, water transport efficiency and photosynthetic capacity) of Atlantic Forest tree species with the assumptions that evolutionary pressures have selected species-specific characteristics which enable them to optimize and coordinate the capture of solar radiation with the water transport to the leaves. We show that wood density is a trait that can be used to predict the behavior of tree species in relation to growth rates and properties related to transport efficiency and water use. Less shadetolerant species have low wood density and high efficiency in water transport from soil to leaves. In environments with high solar radiation and evaporative demand, plants that have a low wood density and high water transport efficiency from the soil to the leaves can maintain high levels of leaf water potential (and experience less water deficit), increased stomatal conductance and, consequently, a higher rate of assimilation and growth. Drastic changes in solar radiation produced by a gap opening in the forest can also impose drastic environmental changes for plant growth. The development of the individuals in the new conditions depends on its phenotypic plasticity, which can vary widely among different species. Saplings of less tolerant species can respond quickly to changes in solar radiation acclimating their physiology and morphology resulting in higher growth rates than saplings of tolerant species.  |l eng 
593 |a Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Argentina 
593 |a Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones, CONICET, Puerto Iguazú, Misiones, Argentina 
690 1 0 |a CARBON ASSIMILATION RATE 
690 1 0 |a GROWTH RATE 
690 1 0 |a HYDRAULIC ARCHITECTURE 
690 1 0 |a WATER TRANSPORT EFFICIENCY 
690 1 0 |a WOOD DENSITY 
690 1 0 |a ACCLIMATION 
690 1 0 |a ADAPTATION 
690 1 0 |a ECOPHYSIOLOGY 
690 1 0 |a ENVIRONMENTAL CHANGE 
690 1 0 |a EVAPORATION 
690 1 0 |a EVOLUTIONARY BIOLOGY 
690 1 0 |a FOREST ECOSYSTEM 
690 1 0 |a FUNCTIONAL GROUP 
690 1 0 |a GERMINATION 
690 1 0 |a GROWTH RATE 
690 1 0 |a IRRADIANCE 
690 1 0 |a MORPHOLOGY 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a SAPLING 
690 1 0 |a SHADE TOLERANCE 
690 1 0 |a SOLAR RADIATION 
690 1 0 |a SPATIOTEMPORAL ANALYSIS 
690 1 0 |a ATLANTIC FOREST 
651 4 |a ARGENTINA 
651 4 |a MISIONES [ARGENTINA] 
700 1 |a Genoveva Gatti, M. 
700 1 |a Montti, L. 
700 1 |a Villagra, M. 
700 1 |a Goldstein, G. 
773 0 |d 2011  |g v. 21  |h pp. 285-300  |k n. 3  |p Ecol. Austral  |x 03275477  |w (AR-BaUEN)CENRE-1929  |t Ecologia Austral 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-83455237828&partnerID=40&md5=38b35bc4e420defe76c5b5e6043971a4  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03275477_v21_n3_p285_Campanello  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v21_n3_p285_Campanello  |y Registro en la Biblioteca Digital 
961 |a paper_03275477_v21_n3_p285_Campanello  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71069