Strategies for extending shelf life of foods using antimicrobial edible films

The development and production of new packaging materials, which are friendlier with the environment, is actually being studied with the purpose of minimizing the environmental pollution that is produced by the use of traditional, non-biodegradable packaging. In the framework of this interest, the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Flores, S.K
Otros Autores: Gerschenson, L.N, Jagus, R.J, Sanjurjo, K.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2011
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 21570caa a22012377a 4500
001 PAPER-10048
003 AR-BaUEN
005 20230518204003.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84884900397 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Flores, S.K. 
245 1 0 |a Strategies for extending shelf life of foods using antimicrobial edible films 
260 |b Nova Science Publishers, Inc.  |c 2011 
270 1 0 |m Flores, S.K.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria,Intendente Güiraldes 2620 (1428), Ciudad Autonoma de, Argentina; email: sflores@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ahvenainen, R., Novel food packaging techniques (2003), Boca Ratón, FL: CRC Press; Anker, M., Berntsen, J., Hermansson, A.M., Stading, M., Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride (2001) Innovative Food Science and Emerging Technologies, 3, pp. 81-92 
504 |a (1990), AOAC Official Methods of Analysis (13th). Washington, DC: Association of Official Analytical Chemists; Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., Yamamoto, N., Edible films made from gelatin, soluble starch and polyols, Part 3 (1997) Food Chemistry, 60, pp. 593-604 
504 |a (2000), ASTM E96-00. Standard Test Method for water vapor transmission of Materials. Philadelphia: American Society for Testing and Materials; (1988), ASTM E1925. Standard Test Method for yellowness index of plastics. Philadelphia: American Society for Testing and Materials; Atichokudomchai, N., Varavinit, S., Characterization and utilization of acid-modified cross-linked Tapioca Starch in pharmaceutical tablets (2002) Carbohydrate Polymers, 53, pp. 263-270 
504 |a Ayranci, E., Tunc, S., A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods (2003) Food Chemistry, 80, pp. 423-431 
504 |a Buonocore, G.G., Del Nobile, M.A., Panizza, A., Bove, S., Battaglia, G., Nicolais, L., Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications (2003) Journal of Food Science, 68 (4), pp. 1365-1370 
504 |a Buonocore, G.G., Del Nobile, M.A., Panizza, A., Corbo, M.R., Nicolais, L., A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications (2003) Journal of Controlled Release, 90, pp. 97-107 
504 |a Bureau, G., Packaging and microbiology (1996) Food packaging technology, pp. 47-56. , G. Bureau, & J.L. Multon (Eds.), (1o). New York: Wiley-VCH Inc 
504 |a Castro, M.P., Garro, O., Gerschenson, L.N., Campos, C.A., Interactions between potassium sorbate, oil and Twin 20 its effect on the growth and inhibition of Z. bailii in model salad dressings (2003) Journal of Food Safety, 23, pp. 47-59 
504 |a Chaisawang, M., Suphantharika, M., Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch (2005) Carbohydrate Polymers, 61, pp. 195-288 
504 |a Che, S.Y., Rhee, C., Sorption characteristics of soy protein films and their relative to mechanical properties (2002) Lebensmittel Wissenschaft und Technologie, 35, pp. 151-157 
504 |a Chen, C.C., Modification of Oswin EMC / ERH equation (1990) Journal of Agricultural Research of China, 39, pp. 367-376 
504 |a Chillo, S., Flores, S.M., Mastromatteo, M., Conte, A., Gerschenson, L., Del Nobile, M.A., Influence of glycerol and chitosan on tapioca starch-based edible film properties (2008) Journal of Food Engineering, 88, pp. 159-168 
504 |a Choi, J.H., Choi, W.Y., Chinnan, M.J., Park, H.J., Lee, D.S., Park, J.M., Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film (2005) Lebensmittel Wissenschaft und Technologie, 38, pp. 417-423 
504 |a Chung, D., Chikindas, M., Yan, K., Inhibition of Saccharomyces cerevisiae by slow release of propyl paraben from a polymer coating (2001) Journal of Food Protection, 64 (9), pp. 1420-1424 
504 |a Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L., Bacteriocins: safe, natural antimicrobials for food preservation (2001) International Journal of Food Microbiology, 71, pp. 1-20 
504 |a Coma, V., Sebtia, I., Pardonb, P., Pichavantb, F.H., Deschamps, A., Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid (2003) Carbohydrate Polymers, 51, pp. 265-271 
504 |a Cutter, C.N., Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods (2006) Meat Science, 74, pp. 131-142 
504 |a Delves-Broughton, J., Review: nisin and its application as a food preservative (1990) Journal of the Society of Dairy Technology, 43, pp. 73-76 
504 |a Delville, J., Joly, C., Dole, P., Biliard, C., Influence of photocrosslinking on the retrogradation of wheat starch based films (2003) Carbohydrate Polymers, 53, pp. 373-381 
504 |a Demirgöz, D., Elvira, C., Mano, J., Cunha, A.M., Piskin, E., Reis, R.L., Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behavior and mechanical properties (2000) Polymer degradation and stability, 70, pp. 161-170 
504 |a de Moura, M.R., Aouada, F.A., Avena-Bustillos, R.J., McHugh, T.H., Krochta, J.M., Mattoso, L.H.C., Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles (2009) Journal of Food Engineering, 92, pp. 448-453 
504 |a Dumoulin, Y., Serge, A., Szabo, P., Cartilier, L., Mateescu, M.A., Cross-linked amylose as matrix for drug controlled release. X-ray and FT-IR structural analysis (1998) Carbohydrate Polymer, 37, pp. 361-370 
504 |a Dutta, P.K., Tripathi, S., Mehrotra, G.K., Dutta, J., Perspectives for chitosan based antimicrobial films in food applications (2009) Food Chemistry, 114, pp. 1173-1182 
504 |a (2002), 33, p. 4. , EUFIC, European Food Information Council, Bulletin Food today; Fabech, B., Hellstrøm, T., Henrysdotter, G., Hjulmand-Lassen, M., Nilsson, J., Rüdinger, L., Sipiläinen-Malm, T., Tuomaala, V., Active and Intelligent Food Packaging. A Nordic report on the legislative aspects (2000), http://www.norden.org/pub/ebook/2000-584.pdf, Nordic co-operation; Fanta, G.F., Shogren, R.L., Salch, J.H., Steam jet cooking oh high amylose starch-fatty acid mixtures. An investigation of complex formation (1999) Carbohydrate polymers, 38, pp. 1-6 
504 |a (2004), FAO Proceedings of the validation forum on the global cassava development strategy. Global cassava market study business opportunities for the use of cassava. Rome; Fernández Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinamaki, J., Iraizoz Colarte, A., Yliruusi, J., Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols (2004) European Journal of Pharmaceutics and Biopharmaceutics, 58, pp. 69-76 
504 |a Flores, S., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of tapioca-starch edible films: influence of filmmaking and potassium sorbate (2007) Food Research international, 40, pp. 257-265 
504 |a Flores, S., Haedo, A.S., Campos, C., Gerschenson, L., Antimicrobial performance of sorbates supported in a tapioca starch edible film (2007) European Food Research and Technology, 225 (3-4), pp. 375-384 
504 |a Flores, S., Conte, A., Campos, C., Gerschenson, L., Del Nobile, M.A., Mass transport properties of tapioca-based active edible films (2007) Journal of Food Engineering, 81, pp. 580-586 
504 |a (1998), 53, p. 11247. , Food and Drug Administration. Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. FDA, Federal Regulation; Franssen, L., Rumsey, T., Krochta, J.M., Modeling of natamycin and potassium sorbate diffusion in whey protein isolate films to application to cheddar cheese (2002), http://ift.confex.com/ift/2002/techprogram/paper_11523.htm, 2002 Annual Meeting and Food Expo. Anaheim, California. Session 28; García, M., Bifani, V., Campos, C., Martino, M.N., Sobral, P., Flores, S., Ferrero, C., Menegalli, F., Edible coating as an oil barrier or active system (2008) Food Engineering: Integrated Approaches, pp. 225-241. , (1o). New York: Ed. Springer 
504 |a Garcia, M., Martino, M., Zaritzky, N., Lipid addition to improve barrier properties of edible starch-based films and coatings (2000) Journal of Food Science, 65, pp. 941-947 
504 |a Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films (1994) Journal of Food Engineering, 21, pp. 395-409 
504 |a Gerschenson, L.N., Campos, C.A., Sorbic Acid Stability during Processing and Storage of High Moisture Foods (1995) Food reservation by moisture control. Fundamentals and applications, pp. 761-790. , G. Barbosa Canovas, & Welti Chanes J (Eds). (1o). Lancaster, PA: Technomic Publishing 
504 |a Giannakopoulos, A., Guilbert, S., Determination of sorbic acid diffusivity in model food gels (1986) Journal of food technology, 21, pp. 339-353 
504 |a Gliemmo, M.F., Campos, C.A., Gerschenson, L.N., Effect of several humectants and potassium sorbate on the growth of Zygosaccharomyces bailii in model aqueous systems resembling low sugar products (2006) Journal of Food Engineering, 77, pp. 761-770 
504 |a Gliemmo, M.F., Campos, C.A., Gerschenson, L.N., Effect of sweet humectants on stability and antimicrobial action of sorbates (2004) Journal of Food Science, 69, pp. 39-44 
504 |a Godbillot, L., Dole, P., Joly, C., Roge, B., Mathlouthi, M., Analysis of water binding in starch plasticized films (2005) Food Chemistry, 96, pp. 380-386 
504 |a Gontard, N., Guilbert, S., Cuq, J.L., Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology (1992) Journal of Food Science, 57, pp. 190-199 
504 |a Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal Research of the National Bureau of Standards. A- Physics and Chemistry, 81, pp. 89-96 
504 |a Guilbert, S., Use of superficial edible layer to protect intermediate moisture foods: Application to the protection of tropical fruit dehydrated by osmosis (1988) Food Preservation by Moisture Control, pp. 199-219. , C. C. Seow (Ed.). (1o). New York: Elsevier Applied Science Publishers, Ltd 
504 |a Guillard, V., Issoupov, V., Redl, A., Gontard, N., Food preservative content reduction by controlling sorbic acid release from a superficial coating (2009) Innovative Food Science & Emerging Technologies, 10, pp. 108-115 
504 |a Han, J.H., Krochta, J.M., Physical Properties of Whey Protein Coating Physical Properties of Whey Protein Coating Solutions and Films Containing Antioxidants (2007) Journal of Food Science, 72, pp. 308-314 
504 |a Han, J.H., Antimicrobial food packaging (2000) Food technology, 54, pp. 56-65 
504 |a Hurst, A., Nisin (1981) Advances in Applied Microbiology, 27, pp. 85-123 
504 |a Hurst, A., Hoover, D.G., Nisin (1993) Antimicrobials in food, pp. 369-394. , P. M. Davidson, & A. L. Branen (Eds.), (1o). New York: Marcel Dekker 
504 |a Kester, J.J., Fennema, O.R., Edible films and coatings: a review (1986) Food Technology, pp. 47-59. , December 
504 |a Kim, S.J., Ustunol, Z., Solubility and moisture sorption isotherms of whey-protein-based edible films as influenced by lipid and plasticizer incorporation (2001) Journal of Agricultural and Food Chemistry, 49, pp. 4388-4391 
504 |a Ko, S., Janes, M.E., Hettiarachchy, N.S., Johnson, M.G., Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes (2001) Journal of Food Science, 66, pp. 1006-1011 
504 |a Koksel, H., Sahbaz, F., Ozboy, O., Influence of wheat-drying temperatures on the birefringence and X-ray diffraction patterns of wet-harvested wheat starch (1993) Cereal Chemistry, 70, pp. 481-483 
504 |a Le Tien, C., Letendre, M., Ispas-Szabo, P., Mateescu, M.A., Delmas-Petterson, G., Yu, H.L., Lacroix, M., Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose (2000) Journal of Agricultural and Food Chemistry, 48, pp. 5566-5575 
504 |a Leistner, L., Use of hurdle technology in food processing: recent advances (1995) J. Food Preservation by Moisture Control. Fundamentals and Applications, pp. 377-396. , G. Barbosa Cánovas, G., Welti Chanes (Eds.), Lancaster, Pennsylvania: Economic Publishing Co 
504 |a León, P.G., Rojas, A.M., Gellan gum films as carriers of L-(+)-ascorbic acid (2007) Food Research International, 40 (5), pp. 565-575 
504 |a Liu, Q., Understanding Starches and Their Role in Foods (2005) Food Carbohydrates: Chemistry, Physical Properties and Applications, , CRC Press, Boca Raton, FL, USA 
504 |a Manzocco, L., Nicoli, M.C., Labuza, T., Study of bread staling by X-ray diffraction analysis (2003) Italian Food Technology, XII, pp. 17-23 
504 |a Mathlouthi, M., Water content, water activity, water structure and stability of foodstuffs (2001) Food Control, 12, pp. 409-417 
504 |a Nísperos-Carriedo, M.O., Edible coatings and films base on polysaccharides (1994) Edible coatings and films to improve food quality, pp. 305-335. , J. M. Krochta, E. A. Baldwin, M. O. Nisperos-Carriedo (Eds.), (1o). Lancaster, Pennsylvania: Technomic Publishing Co., Inc 
504 |a Ozdemir, M., Floros, J.D., Analysis and modeling of potassium sorbate diffusion through edible whey protein films (2001) Journal of Food Engineering, 47, pp. 149-155 
504 |a Phan The, D., Debeaufort, F., Voilley, A., Luu, D., Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends (2009) Journal of Food Engineering, 90, pp. 548-558 
504 |a Piermaria, J., Pinotti, A., Garcia, M.A., Abraham, A.G., Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization (2009) Food Hydrocolloids, 23, pp. 684-690 
504 |a Rhim, J.W., Physical and mechanical properties of water resistant sodium alginate films (2004) Lebensmittel Wissenschaft und Technologie, 37, pp. 323-330 
504 |a Rindlav, Å., Hulleman, S.H.D., Gatenholm, P., Formation of starch films with varying crystallinity (1997) Carbohydrate polymers, 34, pp. 25-30 
504 |a Rodríguez, M., Osés, J., Ziani, K., Maté, J.I., Combined effect of plasticizers and surfactants on the physical properties of starch based edible films (2006) Food Research International, 39, pp. 840-846 
504 |a Rojas-Graü, M.A., Soliva-Fortuny, R.C., Martín-Belloso, O., Edible coatings to incorporate active ingredients to fresh cut fruits: a review (2009) Trends in Food Science & Technology, 20, pp. 438-447 
504 |a Sanjurjo, K., Flores, S., Gerschenson, L., Jagus, R., Study of the performance of nisin supported in edible films (2006) Food Research International, 39, pp. 749-754 
504 |a Sebti, I., Delves-Broughton, J., Coma, V.R., Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropyl methylcellulose films (2003) Journal of Agricultural and Food Chemistry, 51, pp. 6468-6474 
504 |a Sebti, I., Ham-Pichavant, F.R., Coma, V., Edible bioactive fatty acid-cellulosic derivative composites used in food-packaging applications (2002) Journal of Agricultural and Food Chemistry, 50, pp. 4290-4294 
504 |a Seker, M., Hanna, M., Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates (2006) Industrial crops and products, 23, pp. 249-255 
504 |a Sofos, J.N., Sorbate Food Preservatives (1o) (1989), Florida: Academic Press; Sokal, R.R., Rohlf, J.B., Biometry (2000) The principles and practice of statistics in biological research (1o), , San Francisco, CA: W. H. Freeman 
504 |a Trezza, T.A., Krochta, J.M., Color stability of edible coatings during prolonged storage (2000) Journal of Food Science, 65, pp. 1166-1169 
504 |a Vásconez, M.B., Flores, S., Campos, C., Alvarado, J., Gerschenson, L., Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings (2009) Food Research International, 42, pp. 762-769 
504 |a Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., Debevere, J., Developments in the active packaging of foods (1999) Trends in Food Science and Technology, 10, pp. 77-86 
504 |a Warth, A.D., Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives (1977) Journal of Applied Bacteriology, 43, pp. 215-230 
504 |a Xie, S.X., Liu, Q., Cui, S.W., Starch modification and applications (2005) Food Carbohydrates. Chemistry, physical properties and applications, pp. 285-322. , S. Cui (Ed.), (1o). Boca Ratón, FL: CRC Press 
504 |a Yang, L., Paulson, A.T., Mechanical and water vapour barrier properties of edible gellan films (2000) Food Research International, 33, pp. 563-570 
504 |a Zhang, Y., Han, J.H., Mechanical and thermal characteristics of pea starch films plasticized with monosaccharides and polyols (2006) Journal of Food Science, 71, pp. 109-118 
504 |a Zobel, H.F., Starch granule structure (1994) Developments in carbohydrate chemistry, pp. 1-36. , R. J. Alexander, & H. F. Zobel (Eds.), (1o). St Paul, Minnesota: The American Association of Cereal Chemists 
504 |a Zeuthen, P., Bøgh-Sørensen, L., (2003) Food preservation techniques, , (1o). Boca Ratón, FL: CRC Press 
520 3 |a The development and production of new packaging materials, which are friendlier with the environment, is actually being studied with the purpose of minimizing the environmental pollution that is produced by the use of traditional, non-biodegradable packaging. In the framework of this interest, the study of the use of biopolymers to produce "edible films" has considerably progressed in the last decade. Starches, proteins, cellulose and derivatives, gums, chitosan, among other hydrocolloids, have been used for producing this kind of films. The presence of a plasticizer agent is always required to minimize brittle structure and antimicrobials or other additives can be included in the film formulation. Antimicrobials will provide the film with specific functional properties in addition to their inherent barrier properties to the water vapor and oxygen and, in this case, the edible films can be thought of as an active packaging material since they are able to support and, eventually, release the food preservatives. The films will perform as an additional microbial stress factor in order to protect the food from the external contamination and, therefore, will contribute to produce shelf life extension. The object of the present study was the production of tapioca starch - glycerol based edible films containing the preservatives potassium sorbate (KS) or nisin. Physicochemical properties of films such as crystalline fraction, solubility in water, sorptional behavior and color attributes were studied. In order to optimize the film functionality, the influence of soy oil addition to the film formulation, the use of sodium trimetaphosphate-chemically cross-linked-tapioca starch and the use of different filmmaking techniques, were evaluated. The study of the effect of the film composition on the physicochemical properties and antimicrobial activity behavior will help to predict the potential usefulness of the film for a particular food system. © 2011 by Nova Science Publishers, Inc. All rights reserved.  |l eng 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria,Intendente Güiraldes 2620 (1428), Ciudad Autonoma de, Argentina 
593 |a National Scientific and Technical Research Council of Argentina (CONICET), Argentina 
593 |a Departamento de Ingeniería Química, Facultad de Ingeniería (FI), Universidad de Buenos Aires (UBA), Ciudad Universitaria,Intendente Güiraldes 2620 (1428), Ciudad Autónoma de, Argentina 
700 1 |a Gerschenson, L.N. 
700 1 |a Jagus, R.J. 
700 1 |a Sanjurjo, K.J. 
773 0 |d Nova Science Publishers, Inc., 2011  |h pp. 69-99  |p Focus on Food Eng.  |z 9781612095981  |t Focus on Food Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884900397&partnerID=40&md5=81fa3430bf87a69c9425321200d648da  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816120_v_n_p69_Flores  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816120_v_n_p69_Flores  |y Registro en la Biblioteca Digital 
961 |a paper_97816120_v_n_p69_Flores  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 71001